אלגברה דיפרנציאלית מדורגת

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

במתמטיקה, ובמיוחד באלגברה דיפרנציאלית ובאלגברה הומולוגית, אלגברה דיפרנציאלית מדורגת היא קומפלקס שרשרת אשר יש עליו מבנה נוסף של כפל אשר מקיים כלל לייבניץ מדורג.

הגדרה[עריכת קוד מקור | עריכה]

אלגברה דיפרנציאלית מדורגת היא אלגברה מדורגת A ביחד עם העתקת דיפרנציאל אדיטיבית d מדרגה 1- המקיימת:

  1. \,d\circ d = 0
  2. \,d(a \cdot b) = (da)\cdot b + (-1)^{|a|}a\cdot d(b)

על פי התנאי הראשון, A היא קומפלקס שרשרת, ואילו על פי התנאי השני, הדיפרנציאל מקיים כלל לייבניץ מדורג.

דוגמאות[עריכת קוד מקור | עריכה]

  • קומפלקס קוזול של חוג A ביחס לקבוצת איברים הוא אלגברה דיפרנציאלית מדורגת.
  • האלגברה הטנזורית של מרחב וקטורי מעל שדה היא אלגברה דיפרנציאלית, כאשר פעולת הדיפרנציאל מוגדרת בדומה לזו של קומפלקס קוזול.

שימושים[עריכת קוד מקור | עריכה]

אחד השימושים החשובים לאלגבראות דיפרנציאליות מדורגות הוא שימוש בהן כמעין רזולוציות לחוגים. באלגברה הומולוגית מקובל להחליף מודול "בעייתי" M בקומפלקס שמורכב ממודולים בעלי התנהגות יפה שהינו קוואזי-איזומורפי לו (כלומר - הקומפלקס הוא רזולוציה של M). בדומה לכך, אם לחוג נתון A יש תכונות "בעייתיות", לעתים ניתן להחליפו באלגברה דיפרנציאלית מדורגת B שהינה קוואזי-איזומרפית לו ושהינה בעלת "התנהגות יפה יותר". מתברר שהקטגוריה הנגזרת של מודולים מעל A שקולה לקטגוריה הנגזרת של מודולים מדורגים דיפרנציאלים מעל B, ולכן במקום לעשות אלגברה הומולוגית מעל החוג ה"בעייתי" A, אפשר לעבוד מעל האלגברה B.