הכללה (מתמטיקה)

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

הכללה היא מאבני היסוד של הפעילות המתמטית. הכללה פירושה לקיחת עצם מתמטי מסוים, ומעבר ממנו לעצם כללי יותר, שהעצם שממנו יצאנו מהווה מקרה פרטי שלו.

מושג B מהווה הכללה של מושג A כאשר:

  • כל מופע של המושג A הוא גם מופע של המושג B.
  • יש מופע של המושג B שאיננו מופע של המושג A.

יתרונה הבולט של ההכללה היא בכך שהיא עוברת מהדיון במושג הפרטי, המצומצם, למושג כללי, ובכך מאפשרת את יישומו של הידע שנצבר אודות המושג המצומצם בעולם המקיף יותר שבו חל המושג הכללי. בנוסף, ההתעסקות ב"תמונה הגדולה" מאפשרת לעתים לגלות מידע חדש על המושג הפרטי, שעד אז היה קשה להבחין בו בשל ריבוי הפרטים הלא רלוונטיים.

דוגמאות להכללה[עריכת קוד מקור | עריכה]