התפלגות בינומית שלילית

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
התפלגות בינומית שלילית, הקו הכתום מייצג את התוחלת ושווה ל-10 בכל האיורים, הקו הירוק מראה את סטיית התקן

בתורת ההסתברות, התפלגות בינומית שלילית היא התפלגות בדידה המתארת את מספר ההצלחות בסדרת ניסויי ברנולי בלתי תלויים לפני שמתרחשים מספר קבוע נתון מראש, r, של כשלונות. לדוגמה, אם נטיל מטבע שוב ושוב, נגדיר כישלון כעץ ונעצור כאשר נקבל עץ בפעם השלישית (אם סימנו מראש r=3 ), אז מספר הכשלונות (קבלת "פלי") שנראה יתפלג באופן בינומי שלילי. אם ההסתברות להצלחה בכל ניסוי היא p וההסתברות לכישלון היא (p‏-1) אז המספר האקראי של ההצלחות שנראה, X, יהיה בעל התפלגות בינומית שלילית עם הפרמטרים (r,p) ונסמן זאת כך:


    X\ \sim\ \text{NB}(r,\, p)

משתנה מקרי X מתפלג נקודתית:


    P_X(k) = {r+k-1 \choose k} (1-p)^r p^k \quad\text{for }k = 0, 1, 2, \dots

כאשר הביטוי בסוגריים הוא המקדם הבינומי ושווה ל:



{r+k-1 \choose k} = \frac{(r+k-1)!}{k!\,(r-1)!}