מכ"ם מזג האוויר

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
Gnome-colors-emblem-development-2.svg הערך נמצא בשלבי עבודה: כדי למנוע התנגשויות עריכה ועבודה כפולה אתם מתבקשים שלא לערוך ערך זה בטרם תוסר הודעה זו, אלא אם כן תיאמתם זאת עם מניחי התבנית.
אם הדף לא נערך במשך שבוע ניתן להסיר את התבנית ולערוך אותו, אך רצוי לתת קודם תזכורת בדף שיחת הכותבים.
מכ"ם גשם בנורמן, אוקלהומה לנוף עמוד גשם (rainshaft)

מכ"ם גשם או מכ"ם מזג האוויר הוא סוג של מכ"ם המיועד לאתר משקעים, לחשב את תנועתם, ולהעריך את סוגם (גשם, שלג וברד). מכ"מי גשם מודרניים נעזרים באפקט דופלר (pulse-Doppler radars) לצורך חישובים אלה. באמצעות שני משתנים אלה ניתן לקבוע את מבנה הסופה, ולאמוד נזקי מזג אוויר צפוי.

במהלך מלחמת העולם השנייה, התגלה כי מזג האוויר גורם להד הנקלט במכ"ם מבצעי, וכך למעשה ממסך מטרות אויב פוטנציאליות. פותחו טכניקות לסנן את ההפרעות, אולם מדענים החלו להתעניין בתופעה ולחקור אותה. זמן קצר לאחר המלחמה, הוסבו מכ"מים עודפים לזיהוי משקעים. מאז מכ"מי גשם התפתחו, וכיום הם בשימוש של שירותים מטאורולוגיים לאומיים, במחלקות מחקר אקדמיות, בתחזית מזג אוויר משודרת. תוכנות ייחודיות, משתמשות בתמונות גולמיות של המכ"ם ליצירת תחזית טווח קצר של מיקום עתידיים של משקעים, עוצמות גשם, שלג ברד, ותופעות מזג אוויר אחרות. נעשה שימוש בנתונים לתחזית נומרית של מזג האוויר לצורך שיפור הניתוח והתחזית.

היסטוריה[עריכת קוד מקור | עריכה]

דייוויד אטלס

במהלך מלחמת העולם השנייה, מפעילי מכ"מים צבאיים הבחינו בהד חוזר כתוצאה מגשם, שלג ומשלג מעורב בגשם (sleet). לאחר המלחמה, בחיים האזרחיים, או במסגרת הקריירה הצבאית, החלו חוקרים לעבוד ולחקור הדים אלה. דייוויד אטלס, חוקר אמרקאי, שעבד תחילה בחיל האוויר ולאחר מכן ב-MIT, פיתח את מכ"מי הגשם המבצעיים הראשונים. החוקרים הקנדיים, ג'.ס מרשל ור.ה. דוגלאס ייסדו את קבוצת "Storny Weather" במונטראל. מרשל והדוקטורנט שלו, וולטר פלמר, מוכרים היטב בעקבות מחקרם על פיזור גדלי הטיפה בענן (drop size distribution), בגשם בגובה בינוני (mid-latitude rain) שתרם רבות להבנת יחסי ה-Z-R, כלומר הקשר בין ההחזרות למכ"ם (Z) ובין רמת הגשם (R). בממלכה המאוחדת, המחקר המשיך לעסוק בתבניות הדי המכ"ם ובמאפייני מזג האוויר, כגון גשם מענני שכבה ומענני ערימה. כמו כן, נערכו מחקרים כדי להעריך את אורכי הגל 1-10 ס"מ.

בשנת 1953, דונלד סטגס, מהנדס אלקטרוניקה, שעבד על סקר מים עבור מדינת אילינוי, הקליט לראשונה הד מכ"ם של "הד קרס" (hook echo) הקשור בסופות טורנדו[1]. בין 1950 ובין 1980, מכ"מי החזרה (reflectivity radars), המודדים מיקום ועוצמת משקעים, אוגדו ברחבי על ידי שירותים מטאורולוגיים ברחבי העולם. בשנות ה-70 החלו המכ"מים לעבור תהליכי תקינה, אורגנו ברשתות, ופותחו המכשירים הראשונים ליצירת תמונות מכ"ם. מספר הזוויות שנסרקו הוגדל ליצירת תמונה תלת ממדית של המשקעים, וכך התאפשרו חתכי רוחב (CAPPI - Constant altitude plan position indicator) וחתכים אנכיים. התפתחות המכ"ם קידמה רבות מחקרים על מבנה סופות רעמים; בפרט עבור מיזם הברד של אלברטה (Alberta Hail Project) בקנדה שחקר את הפיזיקה והדינמיקה של סופות ברד, וכן עבור המעבדה הלאומית לחקר סופות חמורות בארצות הברית (National Severe Storms Laboratory - NSSL).

ה-NSSL, שנוסד בשנת 1964, החל בניסויים בתחום סיגנל קיטוב דואלי ובשימושים באפקט דופלר. במאי 1973 החריב טורנדו עיירה בשם יוניון סיטי, הסמוכה לאוקלהומה סיטי שבארצות הברית. בפעם הראשונה, מכ"ם מדופלר לאורך גל של 10 ס"מ תיעד מחזור חיים שלם של טורנדו‏[2]. החוקרים הבחינו בתנועה סיבובית בגובה הענן לפני שהטורנד נגע בקרקע - חתימת מערבולת-טורנדו (tornadic vortex signature). המחקר של NSSL סייע לשכנע את שירות מזג האוויר הלאומי של ממשלת ארצות הברית שמכ"ם דופלר הוא כלי חיזוי חיוני. ייתכן שמתקפת הטורנדו הגדולה ב-3-4 באפריל 1974 וזריעת ההרס בעקבותיה סייעה להשיג משאבים לפיתוחים מאוחרים יותר.

מכ"ם משנת 1960 מזהה טורנדו המייצר ענני "תאי על" מעל סיינט פול - מיניאפוליס

בין 1980 ו-2000, הפכו רשתות מכ"מי מזג האוויר לנורמה בצפון אמריקה, אירופה, יפן, ישראל ומדינות מפותחות אחרות. מכ"מים קונבנציונליים הוחלפו במכ"מי דופלר, שמלבד מיקום ועוצמה, נותנים מידע גם לגבי מהירות החלקיקים באוויר. בארצות הברית, ב-1988 החלה לפעול בתיאום עם מחקר ה-NSSL, רשת המכ"מים המורכבת ממכ"מים באורך גל של 10 ס"מ. רשת זו נקראת NEXRAD או WSR-88D - Weather Service Radar 1988 Doppler.

ב-1985 ייסדה מחלקת הסביבה הקנדית את תחנת קינג סיטי‏[3][4], ובה מכ"ם דופלר למטרות מחקר בעל אורך גל של 5 ס"מ. אוניברסיטת מקגיל דפלרה את המכ"ם שלה (J. S. Marshall Radar Observatory) ב-1993. בין 1998 ו-2004 נוסדה רשת מכ"מי דופלר מלאה בקנדה. צרפת ומדינות אירופיות נוספות שדרגו את מכ"מיהן לרשתות דופלר בתחילת שנות ה-2000. עם השינויים מהירים בטכנולוגיית המחשוב פותחו אלגוריתמים לזיהוי של מזג אוויר חמור, וכן יישומים נוספים בתחום התקשורת והמחקר.

מ-2000 מחקר בנושא טכנולגיית קיטוב הוביל לשימוש מעשי, והעצימה את המידע לגבי סוג המשקעים (למשל גשם מול שלג). קיטוב דואלי משמעו, פליטת קרינת מיקרוגל שמקוטבות רוחבית ואנכית (ביחס לקרקע). בארצות הברית, צרפת[5]וקנדה צפויה פריסה נרחבת של הטכנולוגיה עד סוף העשור. בפברואר 2013, נזקף לזכות מכ"ם-הדופלר-מזג האוויר עם קיטוב דואלי, הצלת חיי אדם רבים בזמן שטורנדו לילי היכה בדרום מיסיסיפי[6].

מאז 2003, מנהל האוקיינוסים והאטמוספירה הלאומי האמריקאי עורך ניסוי במכ"מי מערך מופע כחלופה לאנטנות הפרבוליות הקונבנציונליות כדי להיטיב את רזולוציית הזמן בהערכת האטמוספירה. התפתחות זו יכולה לסייע מאוד בזיהוי סופות חריפות, שכן התפתחות הסופות ניתן לאמוד טוב יותר עם כמות גדולה יותר של מידע מתוזמן.

באותה השנה, קרן המדע הלאומית של ארצות הברית הקרימה מרכז מחקר הנדסי לשיתוף פעולה בחישת האטמוספירה Engineering Research Center for Collaborative Adaptive Sensing of the) Atmosphere - CASA) - שיתוף פעולה רב תחומי, הכולל אוניברסיטאות רבות של מהנדסים, אנשי מדעי המחשב, מטאורולוגים וסוציולוגים. המרכז נועד להוביל מחקר יסודי, לפתח טכנולוגיה מעשית, ולפרוס אבות-טיפוס של מערכות הנדסיות, כדי להרחיב את מערכות המכ"ם הקיימות. זאת על ידי דגימת את הטרופוספירה התחתונה, אשר לרוב אינה נדגמת, באמצעות מכ"מי מערך מופע לא יקרים, מהירי סריקה, עם יכולת קיטוב דואלי, ובעלי יכולת סריקה מכנית.

אופן פעולת המכ"ם[עריכת קוד מקור | עריכה]

שידור הפולסים[עריכת קוד מקור | עריכה]

אלומת המכ"ם מתפשטת כשהיא מתרחקת מתחנת המכ"ם, ומכסה נפח הגדל עם המרחק.

מכ"מי גשם שולחים פולסים של גלי מיקרו, בתדירות בסדר גודל של מיקרו שנייה, תוך שימוש במגנטרון או קליסטרון מחובר באמצעות מוליך גל (גלבו) לאנטנה פרבולית. אורכי הגל 1-10 ס"מ הם בערך עשר פעמים קוטר הטיפות או חלקיקי הקרח הנמדדים, מאחר שפיזור ריילי מתרחש בתדירויות אלה. כתוצאה מהפגיעה בחלקיקים, חלק מהאנרגיה של כל פולס תחזור על תחנת המכ"ם.

אורכי גל קצרים יותר שימושיים עבור חלקיקים קטנים יותר, ואולם האות נחלש מהר יותר. מסיבה זו, מכ"ם 10 ס"מ (S-band) עדיף, אך יקר יותר ממכ"ם 5 ס"מ C-band. מכ"ם 3 ס"מ X-band משמש רק לטווחים קצרים, ו-1 ס"מ Ka-band משמש רק למחקר תופעות של חלקיקים קטנים כמו קילוח (drizzle) או ערפל[7].

עם התרחקותו מהתחנה, פולס המכ"ם מכסה נפח אוויר גדול יותר, והרזולוציה דועכת. במרחק של כ-150-200 ק"מ, נפח האוויר הנסרק על ידי פולס בודד, עשוי להגיע לסדר גודל של קילומטר רבוע. מושג זה מכונה נפח הפולס.‏[8]

נפח האוויר המכוסה על ידי הפולס בכל נקודת זמן ניתן להערכה על ידי הנוסחה \, {v = h r^2 \theta^2}. כאשר v - הוא הנפח המכוסה, h הוא רוחב הפולס (למשל במטרים, מחושב לפי זמן הימשכות הפולס במכפלת מהירות האור), r הוא מרחק הפולס מהמכ"ם, ו-θ היא רוחב האלומה (או "קרן") ברדיאנים. נוסחה זו מניחה שהאלומה מעגלית וסימטרית, r גדול-גדול מ-h, כך שה-r הנלקח בשני קצוות הפולס הוא כמעט זהה, וצורת הנפח היא חרוט קטום עם עומק h.

האזנה לאותות חוזרים[עריכת קוד מקור | עריכה]

בין כל פולס, המכ"ם משמש כמקלט - הוא מאזין לאותות מחלקיקים באוויר. משך ההאזנה הוא מסדר גודל של מילי-שנייה, זמן הארוך פי אלפי פעמים ממשך הפולס. אורך המופע (פאזה) נקבע לפי הזמן הדרוש לקרינת המיקרוגל להתפשט מהגלאי למטרה ובחזרה, מרחק שיכול להגיע לכמה מאות קילומטרים. המרחק האופקי מהתחנה למטרה מחושב בקלות על ידי הפרש הזמן בין שליחת הפולס ובין זיהוי האות המוחזר. הזמן מומר למרחק על הכפלה במהירות האור.

\text{Distance} = c \frac{\Delta t}{2n},

כאשר מהירות האור, c=299,792.458 km/s, ומקדם השבירה של האוויר n≈ 1.0003.‏[9]


אם פולסים נשלחים בתדירות גבוהה מדי, החזרה של פולס אחד, תיטרף עם החזרות מפולסים קודמים, וכתוצאה מכך תיפול שגיאה בחישובי המרחק.

המכ"ם משדר גלים אלקטרומגנטים לחלל (בתחום של מיקרוגל, אורך גל של 4-10 ס"מ). ככל שהגוף יותר גדול, יש החזרה גדולה יותר של אנרגיה, ולכן ככל שההד הנקלט חזק יותר, כך המשקעים משמעותיים יותר. המכ"ם אינו קולט טיפות ענן, אלא טיפות גשם. מעל אזור המכ"ם יש "חרוט שקט" שבו לא מספק נתונים. ה"אלומה" ששולח המכ"ם היא בהטייה של כחצי מעלה מעל האופק. ההטייה מבטיחה שהגלים לא יחסמו באופן מיידי על ידי עצים, בניינים וכו'. המכ"ם מסתובב 360 מע' ורדיוס הקליטה הוא באזור 200 מייל.

יש הפרש זמן בין שליחת הסיגנל ועד לחזרתו, זה נותן מידע לגבי המרחק. עוצמת המשקעים נמדדת על ידי עוצמת ההד המוחזר, ביחידות של דציבל.

מרכיבים[עריכת קוד מקור | עריכה]

  1. משדר – פולט פולסים של קרינה אלקטרומגנטית בטווח התדירות רדיו (אורך גל של מספר סנטימטרים).
  2. אנטנה – ממקדת ומכוונת את אלומת הגלים.
  3. מקלט – מזהה את האנרגיה מגלי הרדיו המוחזרים מהאובייקטים.
  4. מערכת עיבוד ותצוגה.

בהנחה שהפולסים נעים במהירות האור c, אז היחס בין המרחק r לאובייקט, כאשר t הוא הזמן בין שידור וקליטה הוא: r=ct/2.

הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ The First Tornadic Hook Echo Weather Radar Observations. Colorado State University (2008). אוחזר ב־2008-01-30.
  2. ^ Susan Cobb (29 October 2004). Weather radar development highlight of the National Severe Storms Laboratory first 40 years. NOAA Magazine. National Oceanic and Atmospheric Administration. אוחזר ב־2009-03-07.
  3. ^ Crozier, C.L.; P.I. Joe, J.W. Scott, H.N. Herscovitch, and T.R. Nichols (1991). "The King City Operational Doppler Radar: Development, All-Season Applications and Forecasting". Atmosphere-Ocean 29 (3): 479–516. Canadian Meteorological and Oceanographic Society (CMOS). doi:10.1080/07055900.1991.9649414. אוחזר ב־10 May 2012. 
  4. ^ Information about Canadian radar network. The National Radar Program. Environment Canada (2002). אוחזר ב־2006-06-14.
  5. ^ [url=http://ams.confex.com/ams/pdfpapers/96217.pdf] The PANTHERE project and the evolution of the French operational radar network and products: Rain estimation, Doppler winds, and dual polarization, Parent du Châtelet, Jacques et al. Météo-France (2005) 32nd Radar Conference of the American Meteorological Society, Albuquerque NM
  6. ^ New Tool Confirmed Tornado, Deseret News, 16 February 2013, p. A2: "The Dual-polarization Doppler technology allowed forecasters to see the shape and size of debris inside the tornado. In the past, forecasters have generally relied on visual reports of tornadoes, which are difficult to get at night."
  7. ^ Doviak, R. J.; D. S. Zrnic (1993). Doppler Radar and Weather Observations (2nd ed.). San Diego CA: Academic Press. <a title="International Standard Book Number" href="https://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a> <a title="Special:BookSources/0-12-221420-X" href="https://en.wikipedia.org/wiki/Special:BookSources/0-12-221420-X">0-12-221420-X</a>.
  8. ^ תבנית:En icon Pulse volume. Glossary of Meteorology. American Meteorological Society (2009). אוחזר ב־2009-09-27.
  9. ^ de Podesta, M (2002). Understanding the Properties of Matter. CRC Press, 131. ISBN 0-415-25788-3.