סוללת ליתיום-יון

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
סוללת ליתיום אלקטרון

סוללת ליתיום אלקטרון היא סוללה נטענת המבוססת על יציאה של אלקטרונים ליתיום מהאלקטרודה השלילית (האנודה, היכן שתהליך החמצון מתרחש), מעבר של היידרך אלקטרוליט המוליך יוני ליתיום בלבד וכניסתם לאלקטרודה החיובית (הקתודה, היכן שתהליך החיזור מתרחש). במהלך הפריקה של הסוללה, מעבר יוני הליתיום מלווה בזרימת אלקטרונים מהאנודה לקתודה דרך המעגל החיצוני. במהלך טעינת הסוללה מתרחש התהליך ההפוך, כלומר יוני ליתיום עוברים אלקטרונים מהקתודה לאנודה. המינוח ליתיום יון בא להדגיש שבסוללות אלה האנודה עשויה מחומר המכיל יוני ליתיום ומאפשר מעבר יונים כאלה ממנו ואליו בפריקה ובטעינה, להבדיל מסוללות ליתיום בהן האנודה עשויה ליתיום מתכתי.

הסוללה מספקת מתח של כ-3.6 וולט, בערך פי 3 מהמתח של סוללות ניקל-קדמיום (Ni-Cd) או ניקל מתכת הידריד (Ni-MH) נטענות. כמו כן, האנרגיה הספציפית של הסוללה יכולה להגיע ל- 150Wh/Kg ואף יותר כתלות באלקטרודות הנבחרות[1]. האלקטרודות הן אלקטרודות אינטרקלציה, קרי אלקטרודות בהן יוני הליתיום יכולים לבצע מיגרציה מאלקטרודות ואליהן, זאת בניגוד לסוללות ליתיום ראשוניות המבוססות על ליתיום בצורתו המתכתית כאלקטרודה השלילית.

סוללות ליתיום יון שכיחות בעיקר באפליקציות של מכשירים אלקטרונים ניידים, הודות לצפיפות האנרגיה הגבוהה שלהן, מספר מחזורי פריקה/טעינה גבוה ואיבוד נמוך של הקיבול במהלך המחזורים. כיום, ניתן למצוא את סוללות הליתיום-יון גם ביישומים צבאיים, כלי-רכב חשמליים ובשימושים שונים בתעופה.

היסטוריה[עריכת קוד מקור | עריכה]

בשנת 1970 גילה מנלי סטנלי וויטנגהם (Manley Stanley Whittingham), בזמן שעבד בחברת אקסון (Exxon), את הקונספט של אלקטרודות אינטרקלציה, אשר הובילו את חברת אקסון לייצור סוללת ליתיום נטענת ראשונה המבוססת על קתודת טיטניום(II) סולפיד (TiS2) ועל אנודת ליתיום-אלומיניום [2][3], אינטרקלציה ודה-אינטרקלציה של יוני ליתיום מגרפיט [4] ואינטרקלציה אל תחמוצות קתודיות [5] דווחו גם הן בשנת 1970 על ידי J.O. Besenhard, שהציע את השימוש במערכות אלו כסוללות ליתיום בעלות צפיפויות אנרגיה גבוהות [6][7],

כיוון שסוללות ליתיום ראשוניות, בהן האלקטרודה השלילית מורכבת ממתכת ליתיום, סבלו מבעיית בטיחות, חוקרים רבים פנו לפיתוח סוללות בהן שתי האלקטרודות מורכבות מחומרים שמכילים יוני ליתיום בלבד, אך אינם מכילים מתכת ליתיום.

בשנת 1979 ג'ון גודאינף (John Goodenough) הציג תא נטען בעל מתח של 4 וולט הכולל מתכת ליתיום כאלקטרודה שלילית ותחמוצת ליתיום קובלט (LiCoO2) כאלקטרודה החיובית. השימוש בליתיום קובלט אוקסיד היציב בתא כחומר קתודי, פתח אפשרויות רבות עבור מערכות סוללות נטענות.

היה זה הפיתוח של אנודות גרפיט בתחילת שנות ה-80 על ידי מעבדות בל אשר סימן את תחילת המעבר מסוללות ליתיום המבוססות על ליתיום מתכתי כאנודה לסוללות המבוססות על יוני ליתיום.

בשנת 1979 סאמר בסו (Samar Basu) הראה אינטרקלציה אלקטרוכימית של יוני ליתיום אל תוך גרפיט [8]. מחקרו הוביל לפיתוח של אלקטרודת גרפיט (LiC6) במעבדות בל[9] שהיוו אלטרנטיבה לסוללות ליתיום המבוססות על מתכת ליתיום כאלקטרודה השלילית.

בשנת 1980 ראשיד יאזמי היה הראשון שהציג אינטרקלציה אלקטרוכימית הפיכה של יוני ליתיום לתוך גרפיט בתא אלקטרוכימי בעל אלקטרוליט פולימרי. מאוחר יותר הובילה תגלית זו לפיתוח אנודות גרפיט, המשמשות כיום כאלקטרודות שליליות בסוללות ליתיום יון מסחריות.

בשנת 1983 גודאינף, ד"ר מיכאל תקרי (Michael Thackeray) ועמיתים נוספים זיהו את הפוטנציאל של תחמוצות מנגן בעלות מבנה "ספינל" לשמש כחומר קתודי בסוללת ליתיום יון [10]. קתודה זו הייתה מבטיחה מאוד הודות לעלותה הנמוכה, הולכה אלקטרונית והולכה יונית גבוהה ויציבות מבנית. על מנת לשמר את מבנה התחמוצות במהלך מחזורי טעינה ופריקה נעשו ניסיונות שונים למודיפיקציות כימיות של המבנה.

בשנת 1985 אקירה יושינו הרכיב תא הכולל אנודה המבוססת על חומר פחמני אליו ליתיום יוכל להיכנס, וקתודת ליתיום קובלט אוקסיד[11]. אב טיפוס זה היה למעשה אב טיפוס של סוללת ליתיום יון הקיימת היום.

בשנת 1991 שיפורים במתח התא ובביצועיו הכלליים הובילו לשיווק סוללת הליתיום יון המסחרית הראשונה על ידי חברת סוני ואשאי קאסיי.

בשנת 1996 גודאינף, אקשאיה פאדי ועמיתים נוספים דיווחו על שימוש בליתיום ברזל פוספט (LiFePO4) ובחומרים נוספים המבוססים על מבנה אוליבין (olivine) כחומרים קתודים בסוללת ליתיום יון[12].

בשנת 2002 יט-מינג שיאן וקבוצתו מ-MIT השיגו שיפור ניכר בביצועים של סוללת ליתיום-יון שנבע מהעלאת מוליכות האלקטרודות על ידי סימום (אילוח) האלקטרודות באלמנטים כמו אלומיניום, נאוביום וזירקוניום.

בשנת 2004 שיאן שוב הצליח להגדיל את ביצועי הסוללה על ידי שימוש בחלקיקים ננומטרים של ברזל פוספאט, FePO4.

החל משנת 2011 סוללות ליתיום יון הן הסוללות הנטענות הנמכרות ביותר עבור מכשירים חשמליים ניידים ביפן[13].

אופן פעולת התא[עריכת קוד מקור | עריכה]

סוללת ליתיום יון מורכבת כמו כל סוללה מאנודה, קתודה, אלקטרוליט וספרטור. הייחוד של סוללה מסוג זה טמון באלקטרודות שלה. האלקטרודות הן אלקטרודות אינטרקלציה, כלומר אלקטרודות בעלות מבנה סריגי, שבו צורון אורח, יון הליתיום, יכול לחדור או להיחלץ מבלי לגרום לשינויים מבניים הרסניים בחומר המארח. במהלך פריקת התא יוני ליתיום יוצאים מהאנודה ונעים דרך האלקטרוליט והספרטור לעבר הקתודה, שם יוני הליתיום נכנסים לאתרי החלפה בסריג. בטעינת התא, יוני הליתיום יוצאים מהקתודה ונעים לעבר האנודה דרך האלקטרוליט. למעשה כאשר תא של ליתיום-יון נפרק, יוני ליתיום עוברים תהליך של דה-אינטרקלציה באנודה ואינטרקלציה בקתודה, בעוד שהתהליך ההפוך מתרחש בעת טעינת התא.

אלקטרודות האינטרקלציה מורכבות לרוב מחומר בעל סריג יציב המאופיין במבנה שכבות (layered oxides) או מעין תעלות (spinel structure) המאפשרות כניסה ויציאה נוחה לצורונים אורחים. האלקטרודה החיובית הינה תחמוצת מתכתית המבוססת על מתכות מעבר, והאלקטרודה השלילית מורכבת לרוב מפחמן פורוזיבי מסוג גרפיט. החומרים, מהם עשויים הקתודות, מאפשרים חדירה של יוני ליתיום אל אתרי החלפה בסריג, אשר הינם נגישים לכניסה של יוני ליתיום. כניסה ויציאה של יוני הליתיום מהאלקטרודות מובילה להתפלגות מטען שונה בחומר המארח ועל כן לזרימת אלקטרונים במעגל החיצוני על מנת לשמר נטרליות חשמלית בחומר.

אלקטרוכימיה[עריכת קוד מקור | עריכה]

סוללת ליתיום-יון מבוססת על מחזורי אינטרקלציה ודה-אינטרקלציה של יוני ליתיום לתוך מבנה שהינו שכבתי. אחת מסוללות הליתיום-יון השכיחות ביותר מבוססת על קתודת LiCoO2. התהליך הראשוני בסוללת ליתיום הינו טעינה, כלומר יציאה של יוני ליתיום מהקתודה וכניסה של יוני ליתיום לאנודה. להלן התהליכים המתרחשים במהלך פריקת וטעינת התא הנ"ל:

Battery as a whole 4.JPG

טעינת הסוללה מוגבלת עד מתח 4.2 וולט, לכן תגובת הטעינה מאפשרת יציאה חלקית של יוני ליתיום מהקתודה כפי שמודגם בתגובה הבאה:

כיתוב תמונה

התגובה הנ"ל היא המכתיבה כי הקיבול הקתודי שמנוצל בפועל הוא כ- 140mAh/g, כלומר כמחצית מהקיבול התאורטי של החומר הקתודי המדובר. יוני הליתיום נכנסים ויוצאים מהקתודה והאנודה. הקובלט, שהיא מתכת מעבר, משנה את מספר החמצון שלה מCo+3 ל- Co+4 במהלך הטעינה ולהפך במהלך הפריקה.

אינטרקלציה של יוני ליתיום בין שכבות אנודת הגרפיט בזמן הטעינה אינה מתרחשת בשלב אחד אלא מורכבת ממספר שלבים. כאשר יון הליתיום עובר אינטרקלציה לתוך הגרפיט, הוא אינו מפוזר באופן הומוגני, אלא יוצר מעין "איים" בין שכבות הגרפיט. הקיבול המקסימלי של אטומי הליתיום באנודה הינו יון ליתיום אחד לשישה אטומי פחמן, LiC6. להלן מספר דוגמאות לחומרים אנודים וקתודים אפשריים בסוללת ליתיום יון:

חומרים מהם עשויה האלקטרודה החיובית הפרש פוטנציאלים ממוצע [וולט] קיבול ספציפי [mAh/g] אנרגיה ספציפית [KWh/Kg]
LiCoO2 3.7 140 0.518
LiMn2O4 4 100 0.400
LiNiO2 3.5 180 0.630
LiFePO4 3.3 150 0.495
Li2FePO4F 3.6 115 0.414
LiCo1/3Ni1/3Mn1/3O2 3.6 160 0.576
Li(LiaNixMnyCoz)O2 4.2 220 0.920
חומרים מהם עשויה האלקטרודה השלילית הפרש פוטנציאלים ממוצע [וולט] קיבול ספציפי [mAh/g] אנרגיה ספציפית [KWh/Kg]
Graphite (LiC6) 0.1-0.2 372 0.0372-0.0744
Titanate (Li4Ti5O12) 1-2 160 0.16-0.32

אלקטרודה שלילית (אנודה)[עריכת קוד מקור | עריכה]

האנודה בסוללת ליתיום יון מורכבת לרוב מגרפיט המאופיין במבנה שכבתי. בכל שכבה אטומי הפחמן מסודרים במבנה הקסגונלי כאשר המרחק בין אטומי הפחמן הינו 1.42Å והמרחק בין השכבות הוא 3.35Å. הרדיוס של יוני הליתיום הוא 0.9Å, ולכן מתאפשרת, במהלך הטעינה של התא, אינטרקלציה שלו בין שכבות הגרפיט.

ככלל, ליתיום אינו יציב מבחינה תרמודינמית, ובמגע עם תמיסת אלקטרוליט (ממסים אורגניים המכילים מלחי ליתיום), נוצרת שכבת פסיבציה על פני שטח האלקטרודה במחזור הטעינה הראשון. דבר דומה מתרחש כאשר האנודה המורכבת מפחמן מוכנסת לתמיסת האלקטרוליט. השכבה המתקבלת היא בעלת תכונות של אלקטרוליט מוצק, כלומר מאפשרת הולכת יוני ליתיום מ/אל האלקטרודה דרך פגמים נקודתיים, ואינה מוליכה אלקטרונית. כינוי שכבה זו הוא SEI ובשמה המלא Solid Electrolyte Interphase, כפי שהוטבע לראשונה על ידי פרופסור עמנואל פלד [14].

מודל המדגים את האינטרקלציה של יונים (בסגול) אל תוך מבנה הגרפיט (שחור)

ניתן לחלק את האנודות בסוללות ליתיום יון לשלושה סוגים עיקריים: אנודות אינטרקלציה, המרה וסגסוג. ההבדלים העיקריים בין האלקטרודות הנ"ל מתבססים על תגובות שונות המתרחשות בעת טעינת/פריקת התא.

אלקטרודה חיובית (קתודה)[עריכת קוד מקור | עריכה]

החומרים הקתודיים בסוללת הליתיום-יון חייבים לענות על מספר דרישות, כגון: יכולת לאכלס מספר גדול של יוני ליתיום, מוליכות אלקטרונית טובה, מאפשרים כניסה כמו גם יציאה של יוני ליתיום מ/אל האלקטרודה, אינם מסיסים באלקטרוליטים, הולכת יוני ליתיום, קלים להכנה וזולים.

נחקרו מספר לא מבוטל של חומרים עבור האלקטרודה החיובית בסוללת הליתיום יון. כיום, ישנם כשלושה סוגים עיקריים של תחמוצות מתכתיות המשמשות כחומרים קתודיים בסוללות ליתיום יון:תחמוצות מתכתיות בעלות מבנה שכבתי, בעלות מבנה ספינל ובעלות מבנה אוליבין.

הדור הראשון של חומרים שנבדקו היו בעלי מבנה שכבתי כדוגמת LiCoO2, LiNiO2 ובעלי מבנה ספינלי כדוגמת LiMn2O4. הודות ליציבות ולבטיחות הגבוהה יחד עם ביצועים טובים של LiCoO2, זוהי הקתודה שנבחרה כקתודה המרכזית עבור סוללות הליתיום יון.

לקראת סוף שנות ה-90 נעשה שימוש בחומר קתודי חדש בעל מבנה olivine, LiFePO4. יחד עם זאת, החומר הוא בעל מוליכות אלקטרונית ויונית נמוכה וביצועי סוללת ליתיום יון זו היו נמוכים. כיום, נמצאו דרכים חדשות בהן ניתן לסנטז חומר בצורה של חלקיקים ננומטרים המצופים פחמן על מנת לצמצם בעיות אלו[15].

תמיסות אלקטרוליט[עריכת קוד מקור | עריכה]

בחירת הממסים עבור סוללת ליתיום יון צריכה לענות על מספר קריטריונים[16]: הממס צריך להיות בעל מקדם דיאלקטרי גבוה על מנת לאפשר יכולת המסת מלחים בריכוז גבוה, בעל צמיגות נמוכה על מנת לאפשר הולכה מהירה של יונים בתמיסה, אינרטי למרכיבי התא השונים ובעל עמידות גובהה בטווח טמפרטורות נרחב.

נמצא כי עבור סוללת ליתיום יון המערכות תמיסה-אלקטרוליט המתאימות ביותר הינן אלו המבוססות על ממסים אורגניים א-פרוטיים פולריים ובפרט תרכובות ממשפחות האתרים והאסתרים.

נקודה מעניינת היא השינוי בתכונות הפיזיקליות של הממסים כתלות בציקליות שלהם. למשל, בעוד ממסים המבוססים על אתר, ציקלים או לינאריים, הם בעלי קבועים דיאלקטריים נמוכים וצמיגות נמוכה, ממסים המבוססים על אסתרים ציקלים הינם בעלי מקדם דיאלקטרי גבוה וצמיגות גבוהה וממסים המבוססים על אתרים לינאריים הם בעלי מקדם דיאלקטרי נמוך וצמיגות נמוכה. ועל כן, הדרישות הנוקשות לבחירת תמיסה הובילו למסקנה כי מערכת בינארית המבוססת על שני ממסים הינה הפתרון האולטימטיבי עבור המערכת ליתיום-יון.

מפרט סוללת ליתיום-יון[עריכת קוד מקור | עריכה]

היות וסוללות ליתיום יון יכולות להיות מורכבות משילובים שונים ומגוונים של קתודות ואנודות, הצפיפות האנרגטית והמתח של סוללת ליתיום יון יכול להשתנות בהתאם. להלן מספר ערכים טיפוסיים:

  • אנרגיה ספציפית[17]: 150 - 250 W•h/kg.
  • צפיפות אנרגיה[18]: 250 - 620 W•h/l.
  • הספק ספציפי‏[19]: 300-1500 W/kg.

יתרונות וחסרונות[עריכת קוד מקור | עריכה]

יתרונות[עריכת קוד מקור | עריכה]
  • צפיפות אנרגטית גבוהה יותר מרוב הסוללות הנטענות האחרות. דהיינו הן יכולות לאגור יותר אנרגיה ליחידת משקל ונפח מכל סוללה נטענת אחרת.
  • פועלות במתחים גבוהים יותר ביחס לכל סוללה נטענת אחרת, בדר"כ ב-3.7 וולט עבור סוללת ליתיום יון לעומת 1.2 וולט עבור סוללות ניקל מתכת הידריד או ניקל קדמיום. המשמעות היא שניתן להשתמש בתא בודד אחד במקום בחיבור של מספר תאי ניקל מתכת הידריד או ניקל קדמיום.
  • בעלות פריקה עצמית נמוכה ביחס לסוללות נטענות אחרות. המשמעות של כך היא שברגע שהן נטענות הן יכולות לשמור על הקיבול שלהן למשך תקופה ארוכה יותר. סוללות ניקל מתכת הידריד או ניקל קדמיום מאבדות כ-1-5% מהקיבול שלהן ליום (כתלות בטמפרטורה בה הן מאוחסנות) אפילו אם הן אינן מורכבות בתוך אפליקציה מסוימת. לעומת זאת, סוללות ליתיום יון ישמרו את רוב הקיבול שלהן אפילו לאחר חודשים של אחסון.
חסרונות[עריכת קוד מקור | עריכה]
  • סוללות ליתיום יון יקרות יותר בכ-40% מסוללות בעלות קיבול דומה כדוגמת הסוללות ניקל מתכת הידריד או ניקל קדמיום. הסיבה לכך נעוצה בעלות ייצור הגבוהה שלהן. סוללות אלו כוללות מעגלים חשמליים מיוחדים אשר מגנים על הסוללה מפני נזק העלול להיגרם עקב טעינת יתר או פריקת יתר.
  • כאשר סוללות אלו נשלחות בכמויות גדולות יש צורך לעמוד ברגולציות מיוחדות.

כלי רכבים חשמליים[עריכת קוד מקור | עריכה]

הטכנולוגיה של כלי רכב חשמליים "מלאים" (FEV) מבוססת על הנעה ישירה מסוללה נטענת. הסוללות הנטענות הנפוצות והמוצלחות הן מסוג ניקל-מתכת-הידריד או ליתיום יון. בעבר הרחוק (סוף המאה ה-19, תחילת המאה ה-20) ואף בשנות ה-90 של המאה ה-20, הנעת רכבים חשמליים "מלאים" הייתה מבוססת על סוללת העופרת (lead-acid). סוללה זו היא בעלת אנרגיה ספציפית נמוכה של כ- Wh/kg30-40 ולכן מגבילה את טווח הנסיעה החשמלי בין טעינה אחת לשנייה ל- 100-160 ק"מ בלבד. כלי רכב שהיו מבוססים על סוללה זו היו כבדים ופחות יעילים. לזמן מה, ובצורה מוגבלת ההנעה החשמלית בכלי רכב הועברה לסוללות ניקל מתכת-הידריד (NiMH). סוללה זו היא בעלת קיבול וטווח נסיעה חשמלי דומים לאלו המתאפשרים על ידי סוללת העופרת אך בעלת אנרגיה ספציפית גבוהה במעט העומדת על Wh/kg30-80. כל הסוללות שהיו כלולות בכלי רכב היברידיים עד לאחרונה היו מסוג NiMH. אולם, בעיות שונות כגון ביצועים ירודים בטמפרטורות קרות, פריקה עצמית גבוהה ואי יכולת פיתוח ומסחור עקב עיכובי פטנטים הגבילו את הפיתוח והיישום של סוללה זו. בסופו של דבר הסוללה שהופכת לדומיננטית בתעשיית הרכב החשמלית היא סוללת הליתיום-יון בווריאציות השונות שלה.

סוללת הליתיום-יון היא כמעט ייחודית ביכולת שלה לספק אנרגיה וצפיפות הספק גבוהים בו-זמנית. הסוללה היא בעלת אנרגיה ספציפית של כ- 200-250Wh/kg וצפיפויות הספק גבוהות של 250-340W/kg, פרמטר חשוב מאוד עבור אפליקציה של כלי רכב חשמליים היות שהאחרון משפיע על יכולת הרכב להאיץ במהירות ולהגיע למהירויות גבוהות.

חלפו כמעט שני עשורים מאז שסוללות הליתיום-יון נכנסו לשוק. למרות שיפורים מתמידים בביצועים שלהן, הטכנולוגיה הקיימת מתקשה לעמוד בדרישות השוק לסוללה בעלת צפיפות אנרגיה גבוהה דיה שתאפשר מרחקי נסיעה ארוכים יותר בין טעינה לטעינה. בעיה בסיסית קיימת בחומרים מהן עשויות האלקטרודות; לחומרים הללו יש מגבלות אינטרינזיות מבחינת קיבול וצפיפות אנרגטית.

סוללת ליתיום יון קלאסית אינה בעלת פוטנציאל גדול לשיפור של האנרגיה הספציפית הדרושה לרכבים חשמליים. סוללות עם אלקטרודות המרה (conversion) הן בעלות פוטנציאל לאנרגיות ספציפיות גבוהות. יחד עם זאת, הכימיה של האנודות והקתודות סובלת מבעיות ניכרות הבאות לידי ביטוי במספר מחזורים קטן שהסוללות יכולות לספק. הכימיה בסוללות ליתיום-גופרית מציעות צפיפויות אנרגיה גבוהות, אך כרגע נמצאות בשלבי פיתוח ראשונים ונתקלות בבעיות במספר המחזורים ובהספקים נמוכים.

אחד מהאתגרים הגדולים של הרכבים החשמליים הוא טעינה מהירה של הסוללה. אחד הפתרונות המוצעים לבעיה זו הוא המודל של חברת בטר פלייס. חברה זו הקימה תשתית שלמה הכוללת תחנות להחלפת הסוללות. לטעינה זו קוראים "טעינה מכנית" והיא יכולה להיעשות תוך מספר דקות בטעינה רובוטית (בדומה לתדלוק שאורך בין 5 ל-7 דקות). כמו כן, טעינת הסוללות צפויה להתבצע בשעות "מתות" בהן העומס על מערכת החשמל הארצית הוא מינימלי.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ Lithium- based Batteries Information, Battery University.[1]
  2. ^ Lithium ion Battery[2]
  3. ^ Whittingham, M. S. Science 1976, 192, 1126-1127
  4. ^ Besenhard, J. Carbon 1976, 14, 111-115.
  5. ^ Schöllhorn, R.; Kuhlmann, R.; Besenhard, J. Mater. Res. Bull. 1976, 11, 83-90
  6. ^ Besenhard, J.; Eichinger, G. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1976, 68, 1-18
  7. ^ Eichinger, G.; Besenhard, J. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1976, 72, 1-31
  8. ^ Basu, S.; Zeller, C.; Flanders, P.; Fuerst, C.; Johnson, W.; Fischer, J. Materials Science and Engineering 1979, 38, 275-283
  9. ^ Basu Samar, Bell Telephone Laboratories 4304825, 1981
  10. ^ Thackeray, M.; David, W.; Bruce, P.; Goodenough, J. Mater. Res. Bull. 1983, 18, 461-472
  11. ^ yoshino akira, sanechika kenichi and nakajima takayuki 4668595, 1987
  12. ^ Padhi, A.; Nanjundaswamy, K.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188
  13. ^ Mitsuru Homma Battery Association of Japan[3]
  14. ^ Meitav, A.; Peled, E. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1982, 134, 49-63
  15. ^ Zhang, W. J. J. Power Sources 2011, 196, 2962-2970
  16. ^ Xu, K. Chem. Rev. 2004, 104, 4303-4418
  17. ^ Panasonic Rechargeable Li-ion OEM Battery Products[4]
  18. ^ GreenCarCongress.com Panasonic Develops New Higher-Capacity 18650 Li-Ion Cells; Application of Silicon-based Alloy in Anode
  19. ^ Panasonic Rechargeable Li-ion OEM Battery Products