שדה גלובלי

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

במתמטיקה, המונח שדה גלובלי מתייחס לשדה שבו מתקיימת נוסחת המכפלה (ראו להלן). אמיל ארטין ו- C. Nesbitt הוכיחו ששדות כאלה שייכים לאחת משתי משפחות:

יש מספר קווי דמיון בין שני סוגי השדות. לשדות משני הסוגים יש את התכונה שכל ההשלמות שלו הם שדות טופולוגים קומפקטים באופן מקומי (ראו שדה מקומי). כמו כן, שדה מכל אחד מהסוגים ניתן למימוש כשדה השברים של חוג דדקינד שבו כל אידאל שאיננו אידאל האפס הוא מאינדקס סופי.

נוסחת המכפלה[עריכת קוד מקור | עריכה]

הנוסחה המגדירה את השדות הגלובליים קושרת את כל הערכים המוחלטים של השדה, וליתר דיוק את הערכים המוחלטים עד כדי שקילות. שדה הוא גלובלי אם אפשר לבחור נציג אחד של כל מחלקת שקילות של ערכים מוחלטים, כך שלכל x שונה מאפס בשדה מתקיים \ \prod_v |x|_v = 1. לדוגמה, בשדה המספרים הרציונליים יש לעבור על כל ההערכות ה-p-אדיות |p^i\frac{a}{b}|=p^{-i}, לרבות ההערכה הארכימדית, שהיא הערך המוחלט הסטנדרטי. הערך המוחלט ה-p-אדי של מספר רציונלי x הוא 1 כמעט לכל p, ומכפלת הערכים ה-p-אדיים האחרים שווה להפכי של x.

P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.