אוגניו בלטרמי

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש
אוגניו בלטרמי
Eugenio Beltrami
Beltrami.jpg
לידה 16 בנובמבר 1835
קרמונה, האימפריה האוסטרית עריכת הנתון בוויקינתונים
פטירה 18 בפברואר 1900 (בגיל 64)
רומא, איטליה עריכת הנתון בוויקינתונים
ענף מדעי גאומטריה דיפרנציאלית עריכת הנתון בוויקינתונים
מקום לימודים אוניברסיטת פאביה (1856) עריכת הנתון בוויקינתונים
מנחה לדוקטורט Francesco Brioschi עריכת הנתון בוויקינתונים
מוסדות
מונחה לדוקטורט Carlo Somigliana, Ernesto Padova עריכת הנתון בוויקינתונים
פרסים והוקרה
  • קצין בכיר של מסדר הכתר של איטליה
  • קצין במסדר סנט מוריס ולזרוס עריכת הנתון בוויקינתונים
לעריכה בוויקינתונים שמשמש מקור לחלק מהמידע בתבנית OOjs UI icon info big.svg

אוגניו בלטרמי (16 בנובמבר 1835 - 18 בפברואר 1900) היה מתמטיקאי איטלקי הזכור בשל תרומותיו לגאומטריה דיפרנציאלית, יסודות הגאומטריה הלא-אוקלידית והפיזיקה המתמטית. עבודתו ניכרת בבהירות ההצגה של רעיונותיו. הוא היה הראשון שהוכיח את העקביות של הגאומטריה הלא-אוקלידית באמצעות מידולה על גבי משטח בעל עקמומיות שלילית קבועה, הפסאודוספירה, ובתוך ספירת היחידה, במה שקרוי מודל קליין-בלטרמי. הוא גם פיתח את טכניקת הפירוק לערכים סינגולריים של מטריצות, שנתגלתה מאז מחדש מספר פעמים. השימוש שעשה בחשבון דיפרנציאלי לצורך פתרון בעיות בפיזיקה מתמטית השפיע בעקיפין על פיתוח החשבון הטנזורי.

תרומותיו לגאומטריה לא-אוקלידית[עריכת קוד מקור | עריכה]

ב-1868 בלטרמי פרסם שני מאמרים שעסקו בעקביות ובפרשנויות לגאומטריה הלא-אוקלידית של בויאי ולובצ'בסקי. במאמרו "חיבור על פרשנות של גאומטריה לא-אוקלידית", בלטרמי הציע שהגאומטריה הזאת ניתנת למימוש על פני משטח בעל עקמומיות גאוס שלילית קבועה, הפסאודוספירה. בהמשגה של בלטרמי, ישרים של הגאומטריה הזאת הם קווים גיאודזיים על הפסאודוספירה ומשפטים בגאומטריה לא-אוקלידית ניתנים להוכחה במסגרת המרחב האוקלידי התלת-ממדי "הרגיל", מבלי לגזור אותן בסגנון אקסיומטי, כפי שבולאי ולובצ'בסקי עשו קודם. ב-1840, פרדיננד מיינדינג בחן משולשים גיאודזיים על הפסאודוספירה וציין שהקשרים הטריגונומטריים המתאימים לצלעות ולזוויות של משולשים כאלו ניתנים לגזירה מהנוסחאות הטריגונומטריות של הטריגונומטריה הספירית באמצעות החלפת הפונקציות הטריגונומטריות הרגילות בפונקציות היפרבוליות; את עבודה זאת המשיך Codazzi ב-1857, אבל לפחות למראית עין אף אחד מהשניים לא הבחין בקשר בין ממצאים אלו לעבודתו של לובצ'בסקי. בהמשך לעבודה זאת של מיינדינג, בלטרמי ניסה להראות שגאומטריה לא-אוקלידית דו-ממדית היא תקפה בדיוק כמו הגאומטריה האוקלידית של המרחב, ובמיוחד, שאקסיומת המקבילים של אוקלידס לא ניתנת לגזירה מהאקסיומות האחרות של הגאומטריה האוקלידית. לעיתים נטען כי הוכחה זאת לא הייתה שלמה עקב נקודות הסינגולריות של הפסאודוספירה, מה שאומר שעקומות גיאודזיות לא ניתנות להרחבה ללא סוף. עם זאת, ההיסטוריון John Stillwell ציין שבלטרמי היה מודע היטב לקשיים הללו, שבאים לידי ביטוי גם בעובדה שהפסאודוספירה היא גליל מבחינה טופולוגית (ולכן עקומים עליה אינם כוויצים), ולא מישור, כך שבחלק גדול ממאמרו הוא ניסה לעקוף בעיה זאת. באמצעות בחירה מתאימה של קואורדינטות, בלטרמי הראה איך המטריקה על הפסאודוספירה ניתן להעברה אל דיסק היחידה ושהסינגולריות של הפסאודוספירה מתאימה להורוצייקל על המישור הלא-אוקלידי. מצד שני, במבוא למאמר שלו, בלטרמי טוען שזה בלתי אפשרי להצדיק "את שאר התאוריה של לובצ'בסקי", כלומר את הגאומטריה הלא-אוקלידית של המרחב, בעזרת שיטה זאת.

במאמר שני שפורסם במהלך אותה שנה (1868) - "תאוריה של מרחבים בעלי עקמומיות קבועה", בלטרמי המשיך את הלוגיקה הזאת ונתן הוכחה מופשטת של העקביות של הגאומטריה ההיפרבולית והגאומטריה האוקלידית בכל מספר של ממדים. הוא השיג זאת באמצעות הצגת מספר מודלים של גאומטריה לא-אוקלידית, שכת ידועים בשמם מודל קליין-בלטרמי, מודל הדיסק של פואנקרה ומודל חצי המישור העליון, יחד עם הטרנספורמציות המעבירות מודל אחד למשנהו. במקרה של מודל חצי המישור העליון, בלטרמי ציטט הערה של ז'וזף ליוביל על חיבור של גספאר מונז' על גאומטריה דיפרנציאלית. בלטרמי הראה גם שגאומטריה אוקלידית n-ממדית ניתנת למימוש על פני ההורוספירה של המרחב ההיפרבולי ה-(n + 1) - ממדי, כך שהיחס הלוגי בין העקביות של הגאומטריה האוקלידית והעקביות של הגאומטריה הלא-אוקלידית הוא סימטרי. בלטרמי הכיר בחשיבותה של העבודה המהפכנית של רימן מ-1854 ("על ההיפותזה העומדת ביסודות הגאומטריה") לפיתוח רעיונותיו.

אף על פי שמאמריו אלו של בלטרמי נחשבים כיום כחשובים ביותר להתפתחות הגאומטריה הלא-אוקלידית, הקבלה של רעיונותיו בתקופה בה פורסמו הייתה פחות נלהבת. לואיג'י קרמונה (אנ') התנגד ללוגיקות מעגליות מסוג זה, מה שאף אילץ את בלטרמי לדחות את הפרסום של מאמריו בשנה אחת. בעקבות קרמונה, פליקס קליין נכשל לזהות את זכות הקדימות של בלטרמי בבניית מודל הדיסק הפרויקטיבי של הגאומטריה הלא-אוקלידית. את תגובות אלו ניתן לייחס לחדשנות של צורת המחשבה של בלטרמי, שהייתה דומה לרעיונות של רימן בנוגע ליריעות אבסטרקטיות.

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא אוגניו בלטרמי בוויקישיתוף