אי-שוויון צ'בישב

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

בתורת ההסתברות, אי שוויון צ'בישב (נקרא גם צ'בישוֹב או צ'ביצ'ב) הוא אי-שוויון המאפשר להעריך את ההתפלגות של משתנים מקריים על ידי התוחלת שלהם. אי השוויון קרוי על שמו של ממציאו, המתמטיקאי הרוסי פפנוטי צ'בישב.

אי-שוויון צ'בישב קובע כי אם השונות והתוחלת של משתנה מקרי קיימים, אז לכל מתקיים:

בפרט, כאשר מציבים במקום , ומשתמשים בעובדה כי מתקבלת הגרסה הבאה של אי-שוויון צ'בישב:

בגרסתו זו, אי-שוויון צ'בישב מאפשר להעריך את ההסתברות לכך שמשתנה מקרי כלשהו יסטה במידה זו או אחרת מהתוחלת שלו באופן מדויק יותר מאי-שוויון מרקוב ונותן משמעות נוספת למושג השונות. בפרט נובע ממנו, שכאשר השונות קטנה, ההסתברות לסטיות גדולות מהתוחלת קטנה גם היא. בעזרת אי-שוויון צ'בישב אפשר להוכיח את החוק החלש של המספרים הגדולים. אי-שוויון צ'רנוף נותן גרסה חזקה יותר עבור משתני ברנולי.

הוכחת אי-שוויון צ'בישב[עריכת קוד מקור | עריכה]

על פי ההגדרה: . אם נבצע אינטגרציה רק על קבוצת הנקודות במרחב ההסתברות עבורן נקבל גודל קטן יותר או שווה לזה שהתחלנו ממנו:

ועל ידי חלוקה של שני האגפים ב מקבלים את אי-שוויון צ'בישב.

ניתן גם להוכיח את אי-שוויון צ'בישב ישירות מאי-שוויון מרקוב.

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא אי-שוויון צ'בישב בוויקישיתוף