אלגברת לי פתירה

מתוך ויקיפדיה, האנציקלופדיה החופשית

באלגברה מופשטת, אלגברת לי היא פתירה אם סדרת הנגזרת שלה מתאפסת החל ממקום מסוים. לאלגברות לי פתירות יש תפקיד חשוב בתורת המבנה של אלגברות לי, והן קשורות גם לאלגברות נילפוטנטיות ופשוטות למחצה.

הגדרה[עריכת קוד מקור | עריכה]

תהי אלגברת לי מעל שדה . סדרת הנגזרת של היא הסדרה המוגדרת על ידי . בפרט, .

במילים אחרות, הסדרה היא .

נקראת פתירה אם סדרת הנגזרת שלה מתאפסת החל ממקום מסוים, כלומר קיים כך ש-.

תכונות[עריכת קוד מקור | עריכה]

  • אם אידיאל של אלגברת לי , כך ש-, פתירים, אז פתירה.

הרדיקל[עריכת קוד מקור | עריכה]

הרדיקל של אלגברת לי נתונה הוא האידיאל הפתיר המקסימלי שלה. אידיאל כזה קיים ויחיד לפי התכונה החמישית לעיל, ומסומן על ידי . אפיון נוסף שלו הוא הסכום של כל האידיאלים הפתירים.

אלגברת לי בעלת רדיקל טריוויאלי נקראת אלגברת לי פשוטה למחצה. במילים אחרות, זוהי אלגברת לי ללא אידיאלים פתירים. אלגברות מסוג זה מהוות מוקד מרכזי במיון של אלגברות לי, ויש להן מיון מלא.

ראו גם[עריכת קוד מקור | עריכה]

לקריאה נוספת[עריכת קוד מקור | עריכה]

  • Introduction to Lie Algebras and Representation Theory, James Humphreys, p. 10-11

קישורים חיצוניים[עריכת קוד מקור | עריכה]