גימטריה

מתוך ויקיפדיה, האנציקלופדיה החופשית
(הופנה מהדף גימטריא)
קפיצה אל: ניווט, חיפוש
ערכי האותיות
בגימטריה
אות ערך
א 1
ב 2
ג 3
ד 4
ה 5
ו 6
ז 7
ח 8
ט 9
י 10
כ 20
ל 30
מ 40
נ 50
ס 60
ע 70
פ 80
צ 90
ק 100
ר 200
ש 300
ת 400
ת"ק או ך 500
ת"ר או ם 600
ת"ש או ן 700
ת"ת או ף 800
תת"ק או ץ 900
תת"ר או א' 1000

גִּימַטְרִיָּה (בספרות הרבנית: גִּימַטְרִיָּא, ובהתאם לזאת לעתים בלשון רבים: גִּימַטְרִיאוֹת) היא שיטת מספור על פי אותיות. הגימטריה מבוססת על חשבון אותיות לפי ערכיהן. לכל אות יש ערך המספרי שונה, ובצירוף אותיות, מילים ומשפטים, מתקבלת תוצאה מספרית מסוימת.

ההתייחסות לגימטריות יש המייחסים למילים בעלות ערך מספרי זהה משמעות מיסטית, ויש הרואים בכך שעשוע. חז"ל מצאו בגימטריה אסמכתא ומקור לדרשות ופירושים בפסוקי התנ"ך על פי הערך המספרי של המילים.

(בטבלה משמאל מוצגים הערכים של כל האותיות לפי סדר הא"ב).

משמעות השם[עריכת קוד מקור | עריכה]

בעולם העתיק שימשה מדידת האדמה כבסיס לחישוב מסים, והמונח "גאומטריה" (γεωμετρία, "מדידת האדמה" ביוונית) היה ביטוי מכליל למקצוע החשבונאות. על פי אחת הסברות, המונח היווני היה מקור הביטוי "גימטריה". על פי סברה אחרת, מקור הביטוי ביוונית הוא גמא-טריה; כלומר, האות היוונית גמא, שהיא השלישית במניין האותיות באלפבית היווני, ערכה שלוש (טריה).

הגימטריה באלפבית העברי[עריכת קוד מקור | עריכה]

אותיות האלפבית העברי משמשות לכתיבת ספרות עבריות, לפי ערכן המספרי של האותיות המופיע בטבלה שמשמאל. יש שנותנים ערך נפרד לאותיות מנצפ"ך (כלומר האותיות הסופיות): ך=500, ם=600, ן=700, ף=800, ץ=900.

בעבר הייתה הגימטריה השיטה העיקרית לציון מספרים בכתיבה העברית אבל בימינו שימושיה מצומצמים יותר. בעיקר במניית הפסוקים, הפרקים הספרים והעמודים בספרי תנ"ך, ובמניין הימים והשנים בתאריך העברי. לצד הגימטריה מתקיים גם מניין אלפביתי פשוט יותר בו לדוגמה האיבר ה11 הוא כ'.

גימטריה בספרות התלמודית[עריכת קוד מקור | עריכה]

הגימטריה כדרך לקבלת רמז להבנת הכתוב וככלי פרשני שולי נמצאת בשימוש בדברי התנאים ובתלמוד במדרשים[1] - באגדה בלבד, אך אין לומדים הלכות מגימטריה (אלא אם כן הן מקובלות במסורת כהלכה למשה מסיני) (חוץ מלעתים נדירות- נזיר ה א "סתם נזירות 30 יום יהיה בגימטריה תלתין הוה". שבת ע א "דברים הדברים אלה הדברים אלו ל"ט מלאכות שנאמרו למשה בסיני"). בברייתא של ר' אליעזר הגלילי היא נמנית עם המידות שהתורה נדרשת בהן באגדה. בפרקי אבות, לעומת זאת, מודגש ערכה השולי של הגימטריה: "ר' אלעזר חסמא אומר: קינין ופתחי נידה הן גופי הלכות, תקופות וגימטריאות - פרפראות לחכמה".

דוגמאות לגימטריה:

  • על הפסוק (בראשית, י"ד, י"ד): "וישמע אברם, כי נשבה בן אחיו; וירק את חניכיו ילידי ביתו, שמונה עשר ושלש מאות, וירדוף, עד-דן" נאמר בברייתא כי 318 חניכיו ילידי ביתו אינם אלא אליעזר עבד אברהם לבדו, שהרי אליעזר = 318 בגימטריה. בפירושו לפסוק זה אברהם אבן עזרא מותח ביקורת על פרשנות זו ומציין: "וחשבון אותיות אליעזר דרך דרש, כי אין הכתוב מדבר בגימטריא, כי יכול יוכל הרוצה להוציא כל שם לטוב ולרע, רק השם כמשמעו".
  • מהפסוק (במדבר, ו', ה'): "עד מלאת הימים אשר יזיר לה', קדוש יהיה" נלמדת ההלכה (מסכת נזיר, ה/א) שנזירות שלא נקבע אורכה נמשכת 30 יום, כערכה של המילה "יהיה". הרא"ש, בפירושו שם, מזכיר את העובדה שפרט זה הוא הלכה למשה מסיני, ורק נסמך על הפסוק כרמז.
  • הביטוי "נכנס יין יצא סוד" מופיע במסכת עירובין (דף סה/א) ושם מוסבר כי בנוסף להשפעתו המשחררת לשון של היין, תכונה זו שלו נרמזת גם בגימטריה: יין = 70 = סוד.

שימוש בגימטריה נעשה גם בספרות רבנית בתר-תלמודית, ולהלן דוגמאות אחדות:

אצל רש"י הפרשנות באמצעות גימטריה הינה בצמצום, ובפרשנותו לכל התנ"ך יש רק כעשרה מקומות, בהם הוא עושה שימוש בגימטריה[3]. הרמב"ן קבע כי "אין אדם רשאי לדון בחשבון גימטריות ולהוציא מהן [כל] עניין [אשר] עלה בדעתו"[4].

לעומתם רבי יעקב בן אשר בספר פרשנותו לתורה, המכונה "בעל הטורים", עושה שימוש נרחב בגימטריה, ונמצאו בו למעלה מ-600 מקומות, שבהם הוא מפרש באמצעות גימטריה. המחבר מתאר פרשנות זו כ"מעט פרפראות וגימטריות וטעמי המסורות, להמשיך הלב" והיא משמשת כמבוא לפרשנותו המקיפה לתורה.

גם המהר"ל מפראג[5] ופרשנים חסידיים השתמשו תדיר בגימטריה.

גימטריה בקבלה[עריכת קוד מקור | עריכה]

השימוש בגימטריה כחלק מהקבלה החל להתפתח במאה ה-12 ואילך, בהתאם לגישה שהעולם נברא באמצעות צירופים שונים של האלפבית העברי. הגימטריה שימשה כדרך להביא אסמכתא נוספת לחיזוקו של רעיון שיש לו מקורות אחרים, וכאמצעי עזר לזיכרון. שימוש נרחב בגימטריה כדרך לפענח את הכוונות הנסתרות שבתפילה וככלי לפרשנות המקרא מופיע בכתביהם של רבי אלעזר מוורמס ותלמידיו. שימוש נרחב ביותר בגימטריה מופיע בכתביו של רבי אברהם אבולעפיה. דרשה ידועה היא הקשר בין עמלק = ספק = אל אחר = רם (240) שמופיעה בספר "מבוא לחכמת הקבלה"[6].

גרשם שלום, חוקר הקבלה הנודע, מציין:

"בהמשך התפתחות הקבלה מצטיירות שתי מגמות: של חובבי הגימטריה ושל הממעטים להשתמש בה. בדרך כלל ניתן לומר, שרעיונות חדשים נתפתחו תמיד מעבר לתחום הגימטריה, אולם תמיד נמצאו חכמים שמצאו להם ביסוסים או הקשרים רחבים בדרך הגימטריה, ובלי ספק ייחסו להם ערך ממשי העולה על זה של אסמכתא בעלמא"[7].

במאה ה-17 יצא לאור הספר "מגלה עמוקות" של נתן שפירא ובו שימוש נרחב ומעמיק בגימטריה כדרך להגות ולפרשנות. לספר זה הייתה השפעה ניכרת על הבאים אחריו. השבתאים השתמשו בגימטריה כדי להוכיח את משיחיותו של שבתי צבי, ומתנגדיהם השתמשו בטכניקה זו כדי להוכיח את ההפך (למשל באמצעות הגימטריה שבתי צבי = 814 = רוח שקר).

גימטריה בימינו[עריכת קוד מקור | עריכה]

יש פרשנים המשתמשים בגימטריה ככלי להבנה והארה של מושגים וטקסטים, כך למשל אחד = 13 = אהבה, או אשה = 306 = דבש. למעשה, עבור רוב הקשרים-לכאורה המוצגים בעזרת גימטריה ניתן למצוא גם קשרים הפוכים לגמרי, ובהם מובנים הסותרים לאותם צירופי אותיות.

בחוגים דתיים משמשת הגימטריה להפיכת מספרה של השנה העברית למילים בעלות משמעות מעודדת. דוגמה לכך מופיעה בתחילת סיפורו של ש"י עגנון, "הסימן" שבה נאמר: "שנת תרפ"ט, שגימטריא שלה נצח ישראל".

שימוש הומוריסטי בגימטריה נעשה בתוכנית הטלוויזיה "זהו זה", שבה הופיעה דמותו של הבבא בובה, פרודיה על דמותו של מקובל, המשתמש בגימטריה למתן פרשנות לאירועים אקטואליים.

שיטות גימטריה נוספות[עריכת קוד מקור | עריכה]

בנוסף לשיטת הגימטריה הבסיסית, שבה ניתן לכל אות ערך מספרי, התפתחו שיטות גימטריה נוספות, המאפשרות להגיע לשוויונות שאינם נוצרים בשיטה הבסיסית. אחדות מהן מופיעות בספרו של רבי משה קורדובירו, "פרדס רימונים", ובהן:

  • מספר מעוגל, שאינו מביא בחשבון את האפסים בעשרות ובמאות, ולכן, למשל, ל = 3, ק = 1. שיטה זו נקראת גם "מספר קטן" (ראה למטה: גימטריה קטנה).
  • מספר מרובע, שבצד אחד של המשוואה נלקחים ערכים הריבועים של מספרי האותיות. דוגמה: דוד = 42 + 62 + 42 = 68 = חכם.
  • מספר קדמי, שבו ערכה של אות שווה לסכום ערכי כל האותיות החל מהאות א ועד לאות הנתונה. דוגמה: ג = 1 + 2 + 3 = 6.
דוגמה נוספת: כ = 10+20+... +1+2+3 = 75.
  • מילוי אותיות: ערכה של אות שווה לערך השם המלא של האות, כלומר אם נפתח את כל אחת מן האותיות במילה לכדי מילה בפני עצמה. לדוגמה, א תהיה "אלף", ב תהיה "בית", וכך נוכל לחשב את הערך הגימטרי של כל אחת מן האותיות - והסכום הכולל של כל האותיות נקרא גימטריה במילוי אותיות. למשל, האות ח שנכתבת "חית" תהיה בעלת ערך גימטרי של 418.
  • אותיות פנימיות: כל מילה מורכבת ממספר אותיות, וכל אות בפני עצמה יכולה להיכתב כמילה שלמה, לדוגמה: ס - "סמך". בגימטריה רגילה אנחנו מחשבים רק את הערך הגימטרי של האות הראשונה של מילת האות. אמנם ניתן לחשב את ערכן של כל אותיות מילת האות (מילוי אותיות). וכן ניתן לחשב רק את האותיות הפנימיות, כלומר את האותיות הסופיות ללא האות הראשונה.
  • עם הכולל (לעתים רבות בראשי תיבות: עה"כ): הוספת המילה עצמה כמספר אחד לערך הגימטריה.
  • עם האותיות: הוספת מספר האותיות שבמילה לערכה של המילה. לדוגמה: המילה "דוגמה" ערכה 54 ועם האותיות ערכה 59.
  • עם המילים (בדרך כלל נקראת עם התיבות, ובראשי תיבות: עה"ת): הוספת מספר המילים שבמשפט לערך הגימטריה שלו. לדוגמה, ערך הביטוי שמע ישראל הוא 951, ועם המילים - 953.
  • אותיות קודמות: הפיכת כל אות לאות שלפניה (א' נהפכת לת') ואז חישוב גימטריה רגילה. לדוגמה: המילה "בית" נהפכת לביטוי "אטש" שערכו הוא 310.
  • אותיות מאוחרות: הפיכת כל אות לאות שלאחריה (ת' נהפכת לא') ואז חישוב גימטריה רגילה. לדוגמה: המילה "שלום" נהפכת לביטוי "תמזנ" שערכו הוא 497.

גימטריה קטנה[עריכת קוד מקור | עריכה]

צורה נפוצה פחות של שימוש בגימטריה נקראת גימטריה קטנה וקרויה גם חשבון קטן. בגימטריה קטנה, חישוב האותיות אינו לפי סדר עולה לכל הא"ב, אלא במחזור של 1 עד 9. למעשה די להוריד את האפסים מערכי האותיות בחישוב הרגיל. לדוגמה: האות צ' ערכה 90. בגימטריה קטנה יהיה ערכה 9. הדבר שקול לגימטריה מודולו 9, כאשר במקום 0 משתמשים ב-9.

לעוסקים בנומרולוגיה מאפשרת הגימטריה הקטנה לקשר בין הערך הגימטרי של המילים לבין המשמעות הנומרולוגית של התוצאה.

השימוש הנפוץ בגימטריה, אשר בו לא מסכמים את ספרות התוצאה, נקרא בהתאמה, גימטריה גדולה.

איסופספיה[עריכת קוד מקור | עריכה]

איסופספיה (מיוונית: איסוס משמעו שווה, ופְּסֶפוֹס משמעו חלוק נחל) היא המקבילה היוונית לגימטריה. עד שאומצו באירופה הספרות הודיות-ערביות בעקבות פרסום "ספר החשבונייה" של פיבונאצ'י, רווח השימוש באותיות כאמצעי לכימות מספרי. למשל, ביוון העתיקה סימולי הספרות הגיעו מהאותיות.

גימטריה בערבית[עריכת קוד מקור | עריכה]

במהלך ימי הביניים אימצו אנשי דת מוסלמים את הגימטריה מן היהודים כשיטה לפירוש הקוראן, והתאימו אותה לאלפבית הערבי. אנשי הדת המוסלמים הצמידו לכל אות ערבית את הערך שניתן למקבילתה האטימולוגית בעברית. כך, האות הערבית ا קיבלה את הערך 1 (מקבילה ל-א), ب קיבלה את הערך 2 (מקבילה ל-ב), ج -3 (ג), د -4 (ד) וכן הלאה. סדר האותיות המקובל בערבית שונה במידה ניכרת מהמקובל בעברית, ולפיכך, בניגוד לעברית, אין התאמה בין סידור האותיות המשמש במילונאות הערבית, לבין סידור האותיות הערביות על-פי ערכן בגימטריה. לדוגמה, ארבע האותיות הראשונות באלפבית הערבי הן ا ب ت ث, אך אם נסדר את האותיות הערביות על פי ערכן בגימטריה, יהיו ארבע האותיות הראשונות: ا ب ج د, ואילו ت תבוא לקראת סוף הרשימה, כיוון שהיא מקבילה ל-ת בעברית, וערכה 400.

כיוון שבאלפבית הערבי יש 28 אותיות, הגימטריה הערבית אינה עוצרת ב-400, ויש בה אותיות שערכן גבוה יותר. בנוסף, מקובל לתת ערך מספרי לליגטורה لا (צירוף של האותיות ل ו-ا).

תוכנה לגימטריה[עריכת קוד מקור | עריכה]

יש מספר תוכנות שעוזרות למצוא התאמות בגימטריה. בתוכנת האיחזור של פרויקט השו"ת, למשל, יש מודול של חיפוש פסוקים וחלקי פסוקים בתנ"ך שיש להם גימטריה ששווה למחרוזת מסוימת. תוכנה כזו היא כלי עבודה בידי המחפשים רמזי גימטריה בתנ"ך, ומאפשרת להגיע לתוצאה מותאמת לרצון המשתמש. קיימת גם תוכנה בשם "גימטריה", המהווה מחשבון המספק צרופי גימטריה מקבילים ומתעדכן על פי חיפושי הגולשים.

קישורים חיצוניים[עריכת קוד מקור | עריכה]

  • גימטריה - תוכנה לחישוב גימטריות שונות עם מאגר תוצאות מילים.
  • מחשבון גימטריה 2014 אפליקציה שמבצעת חישובים לפי שלל שיטות הגימטריה עם כלים לשם השוואות וחיפוש.
  • מחשבון גימטריה המציג התאמות מול פסוקים מהתנ״ך.
  • גדי אלכסנדרוביץ', גימטרעה, באתר "לא מדויק"
  • Gemaṭriel, מחשבון גימטריה + Leningrad Codex (Codex Leningradensis).

הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ לדוגמה בבלי מסכת ברכות דף ח א, בבלי מסכת שבת דף י ב, ויקרא רבה פרשה כא פסקה ד
  2. ^ ביאור:עד דלא ידע בין ארור המן לברוך מרדכי.
  3. ^ ספר בראשית, פרק י"ט, פסוק כ', ספר ויקרא, פרק ט"ז, פסוק ג', ספר במדבר, פרק ט"ו, פסוק ל"ט, ספר יהושע, פרק י"ז, פסוק י"ד
  4. ^ תחילת ספר הגאולה
  5. ^ גור אריה, בראשית יד יד; שמות ל כט
  6. ^ ספר מבוא לחכמת הקבלה חלק א', שער ד פרק ד; חלק ב', מאמר א על דבר חנוכה
  7. ^ האנציקלופדיה העברית, כרך י', עמ' 686