חבורת הקווטרניונים

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש
גרף קיילי של חבורת הקווטרניונים. חצים אדומים מייצגים כפל מימין ב-i וחצים ירוקים מייצגים כפל מימין ב-j.

חבורת הקווטרניונים היא חבורה לא אבלית מסדר 8. מקובל לסמן את החבורה Q8 או פשוט Q.

ניתן להציג את החבורה כך: . זוהי הצגה נוחה, אך בזבזנית של Q. למעשה החבורה נוצרת גם על ידי שני איברים בלבד, וניתן להציגה כ-. x, y הם כל שניים מבין i, j, k. את לוח הכפל של החבורה אפשר לקרוא מן הטבלה הבאה (כאשר שינוי הסימן של אחד הגורמים משנה גם את הסימן של המכפלה):

× 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

חברות הקווטרניונים עומדת בבסיס אלגברת הקווטרניונים של המילטון . האחרונה היא אוסף הצירופים הליניאריים מעל הממשיים של איברי חבורת הקווטרניונים. כלומר: .

הצגה ליניארית[עריכת קוד מקור | עריכה]

חבורת הקווטרניונים ניתנת להצגה ליניארית כתת חבורה של , החבורה הליניארית המיוחדת מסדר 2 מעל המרוכבים, הכוללת את איברי החבורה הליניארית הכללית שהדטרמיננטה שלהם היא 1:

הצגה נוספת של Q היא כתת-חבורה של , חבורת המטריצות 2×2 מעל השדה הסופי מסדר 3 (שאיבריו הם ):

הצגה זו מראה ש-Q היא תת חבורה נורמלית מאינדקס 3 של (שהסדר שלה הוא 24).

תכונות[עריכת קוד מקור | עריכה]

חבורת הקווטרניונים היא החבורה הקטנה ביותר שהיא המילטונית - חבורה לא אבלית שכל התת-חבורות שלה הן נורמליות. כל חבורה המילטונית מכילה את חבורת הקווטרניונים.

המרכז של החבורה הוא {1, −1}. חבורת המנה ביחס למרכז וחבורת האוטומורפיזמים הפנימיים של חבורת הקווטרניונים איזומורפיות לחבורת הארבעה של קליין. חבורת האוטומורפיזם הכללית איזומורפית לחבורה הסימטרית S4 וחבורת האוטומורפיזם החיצונית ל-S3.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]