מטריצה אוניטרית
באלגברה ליניארית, מטריצה אוניטרית היא מטריצה ריבועית מעל המספרים המרוכבים המקיימת את התנאי
- כלומר
כאשר I היא מטריצת היחידה, ו- הצמוד ההרמיטי של מטריצה A.
מטריצה אוניטרית היא מקרה פרטי של מטריצה נורמלית.
מטריצה אוניטרית שכל מרכיביה הם מספרים ממשיים היא מטריצה אורתוגונלית.
תכונות של מטריצות אוניטריות[עריכת קוד מקור | עריכה]
- מטריצה הפיכה ו-
- מטריצה אוניטרית שומרת מכפלה פנימית: (כאן נעזרנו בתכונות הצמוד ההרמיטי במכפלה פנימית)
- מטריצה אוניטרית שומרת על נורמה, . כתוצאה מכך, ערך מוחלט של כל ערך עצמי שלה הוא 1, ולכן כל ערכיה העצמיים של מטריצה אוניטרית נמצאים על מעגל היחידה של המישור המרוכב.
- אם A אוניטרית אז, ו- הן גם אוניטריות.
- מטריצה nxn מעל שדה היא אוניטרית אם ורק אם שורותיה הן בסיס אורתונורמלי של ביחס למכפלה הפנימית הסטנדרטית בו.
חבורת המטריצות האוניטריות[עריכת קוד מקור | עריכה]
קבוצת המטריצות האוניטריות מסדר n מהווה חבורה כאשר הפעולה הבינארית של החבורה היא כפל מטריצות ומסומנת . תת-חבורת המטריצות האוניטריות עם דטרמיננטה השווה ל-1 נקראת "חבורת המטריצות האוניטריות המיוחדות" ומסומנת .
ראו גם[עריכת קוד מקור | עריכה]
קישורים חיצוניים[עריכת קוד מקור | עריכה]
- מטריצה אוניטרית, באתר MathWorld (באנגלית)