מטריצה אורתוגונלית
באלגברה ליניארית, מטריצה אורתוגונלית היא מטריצה ריבועית שרכיביה ממשיים המקיימת את התנאי , כאשר היא מטריצת היחידה, ו- היא המטריצה המשוחלפת של . למטריצות כאלו יש דטרמיננטה שהיא 1+ או 1-. לכפל במטריצה כזו יש תכונה חשובה: הוא שומר על אורך של וקטורים, וגם על הזווית ביניהם. העמודות של מטריצה אורתוגונלית מהוות בסיס אורתונורמלי למרחב הווקטורי שממדו כמספר עמודות המטריצה, עם המכפלה הפנימית הסטנדרטית.
אפיונים שקולים[עריכת קוד מקור | עריכה]
למטריצות אורתוגונליות ישנן מספר הגדרות שקולות, החשובות בהן הן:
- , כלומר .
- , כלומר שהכפל של וקטורים ב-משמר מכפלה סקלרית.
- העמודות של המטריצה הן בסיס אורתונורמלי.
- השורות של המטריצה הן בסיס אורתונורמלי.
2 הקריטריונים האחרונים דומים זה לזה והם שקולים מאחר שאם אורתוגונלית, כך גם .
חבורת המטריצות האורתוגונליות[עריכת קוד מקור | עריכה]
אוסף המטריצות האורתוגונליות בגודל מעל שדה F סגור לכפל, והוא מהווה חבורה אלגברית שמקובל לסמן ב- . מעל שדה המספרים הממשיים, היא חבורה קומפקטית.
המטריצות האורתוגונליות בעלות דטרמיננטה 1 נקראות "מטריצות אורתוגונליות מיוחדות", והן מרכיבות את תת-החבורה של . בשדה ממאפיין שונה מ-2, היא תת-חבורה מאינדקס 2 (מעל שדה ממאפיין 2, שתי החבורות שוות). המטריצות הסקלריות האורתוגונליות הן , ומגדירים את חבורות המנה ו- .
המטריצה שייכת ל- אם ורק אם n זוגי. לכן, כאשר n זוגי, ארבע החבורות שונות זו מזו, ואילו כאשר n אי זוגי, ו- .
המקרה n=2[עריכת קוד מקור | עריכה]
מעל שדה המספרים הממשיים, כוללת את מטריצות הסיבוב בכל זווית אפשרית. חבורה זו, שהיא אבלית, איזומורפית לחבורה המעגלית של המספרים המרוכבים בעלי נורמה 1, וגם לחבורת המנה . ליפוף כפול של המעגל (כלומר, זיהוי הקצוות ) נותן את אותה חבורה, ולכן . החבורה כוללת איבר נוסף, , המתאים לשיקוף סביב ציר ה-x, ואת כל המכפלות של בסיבובים. החבורה הזו אינה אבלית. גם כאן .
מטריצות אוניטריות[עריכת קוד מקור | עריכה]
מטריצה אורתוגונלית היא מטריצה אוניטרית מעל הממשיים. מטריצה אוניטרית מקיימת: כאשר ותכונה הנובעת מזה היא שעמודותיה ושורותיה פורשות את . הערה:
תכונות של מטריצות אוניטריות[עריכת קוד מקור | עריכה]
- מטריצה הפיכה ו-
- מטריצה אוניטרית שומרת מכפלה פנימית: (כאן נעזרנו בתכונות הצמוד ההרמיטי במכפלה פנימית)
- מטריצה אוניטרית שומרת על נורמה, . כתוצאה מכך, ערך מוחלט של כל ערך עצמי שלה הוא 1.
- אם A אוניטרית ו- גם הן אוניטריות
ראו גם[עריכת קוד מקור | עריכה]
קישורים חיצוניים[עריכת קוד מקור | עריכה]
- מטריצה אורתוגונלית, באתר MathWorld (באנגלית)