מטריצה אורתוגונלית
באלגברה ליניארית, מטריצה אורתוגונלית היא מטריצה ריבועית שרכיביה ממשיים המקיימת את התנאי , כאשר היא מטריצת היחידה, ו- היא המטריצה המשוחלפת של . למטריצות כאלו יש דטרמיננטה שהיא 1+ או 1-. לכפל במטריצה כזו יש תכונה חשובה: הוא שומר על אורך של וקטורים, וגם על הזווית ביניהם. העמודות של מטריצה אורתוגונלית מהוות בסיס אורתונורמלי למרחב הווקטורי שממדו כמספר עמודות המטריצה, עם המכפלה הפנימית הסטנדרטית.
אפיונים שקולים
[עריכת קוד מקור | עריכה]למטריצות אורתוגונליות ישנן מספר הגדרות שקולות, החשובות בהן הן:
- , כלומר .
- , כלומר שהכפל של וקטורים ב-משמר מכפלה סקלרית.
- העמודות של המטריצה הן בסיס אורתונורמלי.
- השורות של המטריצה הן בסיס אורתונורמלי.
2 הקריטריונים האחרונים דומים זה לזה והם שקולים מאחר שאם אורתוגונלית, כך גם .
חבורת המטריצות האורתוגונליות
[עריכת קוד מקור | עריכה]אוסף המטריצות האורתוגונליות בגודל מעל שדה F סגור לכפל, והוא מהווה חבורה אלגברית שמקובל לסמן ב- . מעל שדה המספרים הממשיים, היא חבורה קומפקטית.
המטריצות האורתוגונליות בעלות דטרמיננטה 1 נקראות "מטריצות אורתוגונליות מיוחדות", והן מרכיבות את תת-החבורה של . בשדה ממאפיין שונה מ-2, היא תת-חבורה מאינדקס 2 (מעל שדה ממאפיין 2, שתי החבורות שוות). המטריצות הסקלריות האורתוגונליות הן , ומגדירים את חבורות המנה ו- .
המטריצה שייכת ל- אם ורק אם n זוגי. לכן, כאשר n זוגי, ארבע החבורות שונות זו מזו, ואילו כאשר n אי זוגי, ו- .
המקרה n=2
[עריכת קוד מקור | עריכה]מעל שדה המספרים הממשיים, כוללת את מטריצות הסיבוב בכל זווית אפשרית. חבורה זו, שהיא אבלית, איזומורפית לחבורה המעגלית של המספרים המרוכבים בעלי נורמה 1, וגם לחבורת המנה . ליפוף כפול של המעגל (כלומר, זיהוי הקצוות ) נותן את אותה חבורה, ולכן . החבורה כוללת איבר נוסף, , המתאים לשיקוף סביב ציר ה-x, ואת כל המכפלות של בסיבובים. החבורה הזו אינה אבלית. גם כאן .
מטריצות אוניטריות
[עריכת קוד מקור | עריכה]מטריצה אורתוגונלית היא מטריצה אוניטרית מעל הממשיים. מטריצה אוניטרית מקיימת: כאשר ותכונה הנובעת מזה היא שעמודותיה ושורותיה פורשות את . הערה:
תכונות של מטריצות אוניטריות
[עריכת קוד מקור | עריכה]- מטריצה הפיכה ו-
- מטריצה אוניטרית שומרת מכפלה פנימית: (כאן נעזרנו בתכונות הצמוד ההרמיטי במכפלה פנימית)
- מטריצה אוניטרית שומרת על נורמה, . כתוצאה מכך, ערך מוחלט של כל ערך עצמי שלה הוא 1.
- אם A אוניטרית ו- גם הן אוניטריות
ראו גם
[עריכת קוד מקור | עריכה]נושאים באלגברה ליניארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה ליניארית • מערכת משוואות ליניאריות • העתקה ליניארית • מטריצה | |
וקטורים | סקלר • כפל בסקלר • צירוף ליניארי • תלות ליניארית • קבוצה פורשת • בסיס • וקטור קואורדינטות • ממד | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דירוג מטריצות • דרגה • עקבה • מטריצה מצורפת • מטריצת מעבר • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • לכסון מטריצות • צורת ז'ורדן | |
העתקות | העתקה ליניארית • קואורדינטות • מטריצה מייצגת • גרעין • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • טרנספורמציה נורמלית • נורמה • מטריקה | |
תבניות | תבנית ביליניארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-ליניארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |
קישורים חיצוניים
[עריכת קוד מקור | עריכה]- מטריצה אורתוגונלית, באתר MathWorld (באנגלית)