משפט ערך הביניים – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
שורה 35: שורה 35:
היא רציפה וסותרת את תכונת ערך הביניים. בכיוון השני, אם מרחב הוא קשיר, תמונתו קשירה (כי אם <math>A,B</math> קבוצות פתוחות וזרות שאיחודן <math>f(X)</math>, <math>f^{-1}(A),f^{-1}(B)</math> הן קבוצות פתוחות וזרות שאיחודן <math>X</math>). וקבוצה קשירה ב-<math>\mathbb{R}</math> היא תמיד קטע.
היא רציפה וסותרת את תכונת ערך הביניים. בכיוון השני, אם מרחב הוא קשיר, תמונתו קשירה (כי אם <math>A,B</math> קבוצות פתוחות וזרות שאיחודן <math>f(X)</math>, <math>f^{-1}(A),f^{-1}(B)</math> הן קבוצות פתוחות וזרות שאיחודן <math>X</math>). וקבוצה קשירה ב-<math>\mathbb{R}</math> היא תמיד קטע.


למשל קבוצת ה[[מספר רציונלי|מספרים הרציונליים]] <math>\mathbb{Q}</math> אינה קשירה ואינה ניחנת בתכונת ערך הביניים. כפי שמעידה לדוגמה הפונקציה הרציפה על הרציונליים:
למשל קבוצת ה[[מספר רציונלי|מספרים הרציונליים]] <math>\mathbb{Q}</math> אינה קשירה, וקיימות בה פונקציות רציפות שאינן מקיימות את תכונת ערך הביניים, כפי שמעידה לדוגמה הפונקציה הרציפה על הרציונליים:

<math>
<math>

f: Q \to \ Q,

f(x)= \left\{\begin{matrix}
f(x)= \left\{\begin{matrix}
1 & \mbox{if } x<\sqrt2 \\
1 & \mbox{if } x<\sqrt2 \\
0 & \mbox{if } x>\sqrt2\end{matrix}\right.
0 & \mbox{if } x>\sqrt2\end{matrix}\right.

</math>.
</math>.



גרסה מ־01:33, 20 בדצמבר 2012

המחשה גרפית של משפט ערך הביניים. u מספר בין ערכי הפונקציה בקצוות הקטע, ולכן קיים c בקטע כך ש-.

בחשבון אינפיניטסימלי, משפט ערך הביניים מספק ביסוס פורמלי לתכונה האינטואיטיבית של פונקציות רציפות כפונקציות ש"ניתן לצייר אותן מבלי להרים את העיפרון מהדף". המשפט אומר כי כאשר פונקציה ממשית רציפה מקבלת שני ערכים שונים, היא תקבל גם כל ערך שביניהם.

ניסוח פורמלי

תהי פונקציה רציפה בקטע . יהי מספר ממשי בין ל- (כלומר או ). אזי קיים כך ש-.

ניסוח נוסף

קיים ניסוח שקול למשפט ערך הביניים, שנותן תמונה גאומטרית יותר של המצב.

בהינתן קטע סגור ופונקציה רציפה , אזי :

  • תמונת הקטע היא גם קטע.
  • מתקיים או ש- או ש .

הוכחה

נניח ללא הגבלת הכלליות ש- (ההוכחה למקרה זהה). אנו רוצים למצוא מספר כך ש- עבור . נגדיר את הקבוצה הבאה: . זהו קבוצה לא ריקה (כי ) וחסומה (על ידי ), מכאן שיש לה חסם עליון, על פי אקסיומת החסם העליון של המספרים הממשיים. נסמן חסם עליון זה , וכעת נוכיח כי .

נניח כי , אז , ולכן, מרציפות נובע שקיים כך שלכל מתקיים , כלומר . אבל מאחר ש- הוא חסם עליון של , בכל סביבה שלו יש איבר מתוך , ובפרט קיים כך ש-, אבל זו סתירה, כי מהגדרת נובע ש-.

נניח כי , אז ולכן קיים כך שלכל מתקיים , כלומר . כלומר, מצאנו איבר שעבורו , בסתירה להיות חסם עליון.

מאחר ששללנו את האפשרויות , בהכרח , כמבוקש.

הטענה ההפוכה

הטענה כי "אם לכל מספר ממשי קיים המקיים , אז f רציפה", אינה נכונה. דוגמה נגדית למשפט היא הפונקציה שמקיימת את התנאי אך היא אינה רציפה בנקודה x=0 (שם מגדירים f(x)=0). דוגמה נגדית חזקה יותר, בה הפונקציה אינה רציפה באף נקודה, היא פונקציית הבסיס-13 של קונוויי.

תכונת ערך הביניים

אומרים שמרחב טופולוגי ניחן בתכונת ערך הביניים אם לכל פונקציה רציפה , לכל ולכל בין ל-, קיים כך ש-. או בנוסח אחר, לכל רציפה, הוא קטע. זוהי תכונה טופולוגית, היא נשמרת תחת הומיאומורפיזם. משפט ערך הביניים אומר שכל קטע הוא מרחב עם תכונת ערך הביניים.

מרחב ניחן בתכונת ערך הביניים אם ורק אם הוא מרחב קשיר - מרחב שאינו איחוד זר של שתי קבוצות פתוחות לא ריקות (אינטואיטיבית, זהו מרחב העשוי מ"חתיכה אחת"). אם מרחב אינו קשיר, אז ניתן להציגו כאיחוד זר של קבוצות פתוחות לא ריקות A ו-B, ואז הפונקציה היא רציפה וסותרת את תכונת ערך הביניים. בכיוון השני, אם מרחב הוא קשיר, תמונתו קשירה (כי אם קבוצות פתוחות וזרות שאיחודן , הן קבוצות פתוחות וזרות שאיחודן ). וקבוצה קשירה ב- היא תמיד קטע.

למשל קבוצת המספרים הרציונליים אינה קשירה, וקיימות בה פונקציות רציפות שאינן מקיימות את תכונת ערך הביניים, כפי שמעידה לדוגמה הפונקציה הרציפה על הרציונליים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikipedia.org/v1/":): {\displaystyle f: Q \to \ Q, f(x)= \left\{\begin{matrix} 1 & \mbox{if } x<\sqrt2 \\ 0 & \mbox{if } x>\sqrt2\end{matrix}\right. } .

ראו גם