שילוש זווית – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
שורה 13: שורה 13:
מאז תחילת המאה ה-19 ידוע שאי אפשר לשלש זווית במחוגה וסרגל. קל לבנות זווית של <math>60^\circ</math> כי זו הזווית הפנימית ב[[משולש שווה-צלעות]]. כדי להוכיח שלא ניתן לשלש זווית בסרגל ומחוגה, מספיק להראות שלא ניתן לבנות זווית של <math>20^\circ</math>. נניח בשלילה שניתן לבנות זווית שכזו, אז ניתן לבנות קטע באורך <math>\cos(20^\circ)</math> בתור ניצב ב[[משולש ישר-זווית]] עם זווית של <math>20^\circ</math> ויתר באורך 1. מ[[זהויות טריגונומטריות]] פשוטות נובע ש-<math>4\cos^3(20^\circ)-3\cos(20^\circ) = \cos(60^\circ) = 1/2</math>.
מאז תחילת המאה ה-19 ידוע שאי אפשר לשלש זווית במחוגה וסרגל. קל לבנות זווית של <math>60^\circ</math> כי זו הזווית הפנימית ב[[משולש שווה-צלעות]]. כדי להוכיח שלא ניתן לשלש זווית בסרגל ומחוגה, מספיק להראות שלא ניתן לבנות זווית של <math>20^\circ</math>. נניח בשלילה שניתן לבנות זווית שכזו, אז ניתן לבנות קטע באורך <math>\cos(20^\circ)</math> בתור ניצב ב[[משולש ישר-זווית]] עם זווית של <math>20^\circ</math> ויתר באורך 1. מ[[זהויות טריגונומטריות]] פשוטות נובע ש-<math>4\cos^3(20^\circ)-3\cos(20^\circ) = \cos(60^\circ) = 1/2</math>.


מכאן ש-<math>\cos(20^\circ)</math> הוא [[שורש (של פונקציה)|שורש]] של ה[[פולינום]] <math>8x^3-6x-1</math>. זהו [[פולינום אי-פריק]] מעל ה[[שדה המספרים הרציונליים]] (כי בדיקה של כל המועמדים האפשריים תראה שאין לו שורש רציונלי). לכן <math>\cos(20^\circ)</math> הוא [[מספר אלגברי]] מדרגה 3.
מכאן ש-<math>\cos(20^\circ)</math> הוא [[שורש (של פונקציה)|שורש]] של ה[[פולינום]] <math>8x^3-6x-1</math>. זהו [[פולינום אי-פריק]] מעל ה[[שדה המספרים הרציונליים]] (כי בדיקה של כל המועמדים האפשריים תראה שאין לו שורש רציונלי). לכן <math>\cos(20^\circ)</math> הוא [[מספר אלגברי]] מדרגה 3, והשדה <math>\ \mathbb{Q}[\cos(20^\circ)]</math> הוא בעל ממד 3 מעל הרציונליים.


מספר מרוכב ניתן לבניה אם ורק אם הוא שייך לשדה בקצה שרשרת של הרחבות ריבועיות של הרציונליים (כי בניות בסרגל ומחוגה מתקבלות מחיתוכים בין ישרים ומעגלים שמניבים הרחבות ריבועיות). לפי ההנחה <math>\cos(20^\circ)</math> ניתן לבנייה ולכן קיימת הרחבה <math>F/\mathbb{Q}</math>
מספר מרוכב ניתן לבניה אם ורק אם הוא שייך לשדה בקצה שרשרת של הרחבות ריבועיות של הרציונליים (כי בניות בסרגל ומחוגה מתקבלות מחיתוכים בין ישרים ומעגלים שמניבים הרחבות ריבועיות). הממד של שדות כאלה הוא כמובן חזקת 2, אבל 3 אינו חזקה של 2, ומכאן שאי אפשר לבנות זווית של 20 מעלות.
כך ש-<math>[F:\mathbb{Q}] = 2^n</math> וכן <math>\cos(20^\circ) \in F</math>. אבל אז נקבל:
:<math>2^n = [F:\mathbb{Q}(\cos(20^\circ))]\cdot [\mathbb{Q}(\cos(20^\circ)):\mathbb{Q}] = [F:\mathbb{Q}(\cos(20^\circ))]\cdot 3</math>

קיבלנו ש-3 מחלק חזקה של 2 וזו סתירה.


==קישורים חיצוניים==
==קישורים חיצוניים==

גרסה מ־02:25, 7 בפברואר 2014

בגאומטריית המישור, בעיית שילוש הזווית (או טריסקציה של זווית) מבקשת לחלק זווית נתונה לשלושה חלקים שווים באמצעות סרגל ומחוגה. זוהי אחת מן הבעיות הגאומטריות של ימי קדם שלא נמצא לה פתרון במשך 2000 שנה. במאה ה-19 פותחה תורת גלואה שאפשרה להוכיח כי שילוש זווית אינו אפשרי באמצעות סרגל ומחוגה. למעשה, אפילו את הזווית של משולש שווה-צלעות לא ניתן לשלש בסרגל ומחוגה.

עם זאת, אפשר לשלש זוויות אם נעזרים בכלים נוספים (מלבד סרגל ומחוגה):

שילוש זווית באמצעות רצועה. נתונה הזווית AOB (באיור:בכחול), כאשר O מרכזו של מעגל שעליו מונחות הנקודות A ו-B. ממשיכים את AO עד לחיתוך D עם המעגל, ומעבירים דרך D מקביל ל-OB, החותך את המעגל בנקודה E. באמצעות הרצועה, מאתרים על הישר OB נקודה X כך שהמרחק ממנה לחיתוך Y של המעגל עם DX שווה לרדיוס המעגל (זו פעולה שלא ניתן לבצע בסרגל ומחוגה). הזווית EDX (באיור: באדום) שווה לשליש הזווית AOB.
  • היפיאס (במאה החמישית לפני הספירה) הראה שבעזרת קוואדרטריקס ניתן לחלק זווית נתונה לשלושה חלקים, ולמעשה לכל מספר שלם של חלקים. (שמו של עקום זה בא לו מיכולתו לרבע את המעגל). שיטה זו ניתנת לתאור נוסף: נניח ש- P נקודה על שפת מעגל ברדיוס R; המקום הגאומטרי של כל הנקודות המתקבלות מהמשכת הישר העובר ב-P דרך נקודה X על המעגל, למרחק של R, מאפשר לשלש כל זווית קטנה מ-135° אשר קודקודה הוא מרכז המעגל.
  • ארכימדס הראה שאפשר, בעזרת מחוגה ורצועה (סרגל כפול, כלומר סרגל שיש לו שני צדדים ישרים מקבילים, במרחק ידוע), לחלק זווית נתונה לשלושה חלקים. ראו איור משמאל.
  • ניקומדס (במאה השנייה לפני הספירה) הראה שאפשר לשלש זווית אם נעזרים בקונכואידה.
  • אטיין פסקל, אביו של בלז פסקל, הראה שאפשר לשלש את הזווית באמצעות קרדיואידה; שיטה זו דומה לשיטתו של ניקומדס.

אי אפשר לשלש במחוגה וסרגל

מאז תחילת המאה ה-19 ידוע שאי אפשר לשלש זווית במחוגה וסרגל. קל לבנות זווית של כי זו הזווית הפנימית במשולש שווה-צלעות. כדי להוכיח שלא ניתן לשלש זווית בסרגל ומחוגה, מספיק להראות שלא ניתן לבנות זווית של . נניח בשלילה שניתן לבנות זווית שכזו, אז ניתן לבנות קטע באורך בתור ניצב במשולש ישר-זווית עם זווית של ויתר באורך 1. מזהויות טריגונומטריות פשוטות נובע ש-.

מכאן ש- הוא שורש של הפולינום . זהו פולינום אי-פריק מעל השדה המספרים הרציונליים (כי בדיקה של כל המועמדים האפשריים תראה שאין לו שורש רציונלי). לכן הוא מספר אלגברי מדרגה 3, והשדה הוא בעל ממד 3 מעל הרציונליים.

מספר מרוכב ניתן לבניה אם ורק אם הוא שייך לשדה בקצה שרשרת של הרחבות ריבועיות של הרציונליים (כי בניות בסרגל ומחוגה מתקבלות מחיתוכים בין ישרים ומעגלים שמניבים הרחבות ריבועיות). הממד של שדות כאלה הוא כמובן חזקת 2, אבל 3 אינו חזקה של 2, ומכאן שאי אפשר לבנות זווית של 20 מעלות.

קישורים חיצוניים