פליטה תרמיונית – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
מ הוספת קישור למהירות האור
אין תקציר עריכה
שורה 1: שורה 1:
[[קובץ:Thermionic filament.jpg|שמאל|ממוזער|250px|תקריב של חוט להט תרמיוני בשפופרת המפיקה אור [[על-סגול]]]]
[[קובץ:Thermionic filament.jpg|שמאל|ממוזער|250px|תקריב של חוט להט תרמיוני בשפופרת המפיקה אור [[על-סגול]]]]
'''פליטה תרמיונית''' היא זרם של חלקיקים נושאי [[מטען חשמלי|מטען]] ממשטח או מסוג אחר של מחסום פוטנציאלי חשמלי, שנגרם על ידי אנרגיית חום-רטט שמתגברת על הכוחות האלקטרוסטטיים המתנגדים. חלקיקים נושאי מטען עשויים להיות [[אלקטרון|אלקטרונים]] או [[יון|יונים]], ולפעמים נקראים תרמיונים. המטען הכולל של החלקיקים הנפלטים (חיוביים או שליליים) יהיה שווה בגודל והפוך בסימן למטען שנותר במשטח הפולט.
'''פליטה תרמיונית''' היא זרם של חלקיקים נושאי [[מטען חשמלי|מטען]] ממשטח או מסוג אחר של מחסום פוטנציאלי חשמלי, שנגרם על ידי אנרגיית חום-רטט שמתגברת על הכוחות האלקטרוסטטיים המתנגדים. חלקיקים נושאי מטען עשויים להיות [[אלקטרון|אלקטרונים]] או [[יון|יונים]], ולפעמים נקראים תרמיונים. המטען הכולל של החלקיקים הנפלטים (חיוביים או שליליים) יהיה שווה בגודל והפוך בסימן למטען שנותר במשטח הפולט.


הדוגמה הקלאסית לפליטה תרמיונית היא פליטה של אלקטרונים מ[[קתודה|קתודת]] מתכת מחוממת בריק (ידוע כאפקט אדיסון), אבל משתמשים במונח "פליטה תרמיונית" לתאר כל תהליך של פליטת מטען עקב חימום, גם כאשר המטען מועבר בין שני [[מוצק]]ים.
הדוגמה הקלאסית לפליטה תרמיונית היא פליטה של אלקטרונים מ[[קתודה|קתודת]] מתכת מחוממת בריק (ידוע כאפקט אדיסון), אבל משתמשים במונח "פליטה תרמיונית" לתאר כל תהליך של פליטת מטען עקב חימום, גם כאשר המטען מועבר בין שני [[מוצק]]ים.
שורה 7: שורה 7:
עוצמת זרם המטענים גדלה באופן קיצוני כאשר ה[[טמפרטורה]] עולה, ופליטה בריק ממתכות נוטה להיות משמעותית בטמפרטורות מעל 1000 [[קלווין]].
עוצמת זרם המטענים גדלה באופן קיצוני כאשר ה[[טמפרטורה]] עולה, ופליטה בריק ממתכות נוטה להיות משמעותית בטמפרטורות מעל 1000 [[קלווין]].


[[תמונה:edisoneffect.png|מסגרת|אפקט אדיסון בשפופרת ריק, דיודה מחוברת שתי קונפיגורציות, באחת יש זרם ובשנייה לא. החצים מסמנים תנועת אלקטרונים.]]
[[קובץ:edisoneffect.png|מסגרת|אפקט אדיסון בשפופרת ריק, דיודה מחוברת שתי קונפיגורציות, באחת יש זרם ובשנייה לא. החצים מסמנים תנועת אלקטרונים.]]


== היסטוריה ==
== היסטוריה ==
התופעה נצפתה לראשונה ב-[[1873]] על ידי [[דניאל לורדן]] ב[[בריטניה]]. כאשר עבד עם חפצים טעונים, גילה לורדן שכדור ברזל לוהט בעל מטען שלילי, מאבד את המטען (על ידי פליטה לריק של אלקטרונים), הוא גם גילה שתופעה זו אינה מתרחשת כאשר הכדור טעון במטען חיובי.
התופעה נצפתה לראשונה ב-[[1873]] על ידי [[דניאל לורדן]] ב[[בריטניה]]. כאשר עבד עם חפצים טעונים, גילה לורדן שכדור ברזל לוהט בעל מטען שלילי, מאבד את המטען (על ידי פליטה לריק של אלקטרונים), הוא גם גילה שתופעה זו אינה מתרחשת כאשר הכדור טעון במטען חיובי.


האפקט נתגלה מחדש על ידי [[תומאס אדיסון]] ב-[[1880]], כאשר ניסה לגלות את הסיבה לשבירה של [[חוט להט|חוטי להט]] ב[[נורה חשמלית|נורה]], והשחרה לא אחידה (כהה יותר בצד אחד של חוט הלהט) של הנורות. אדיסון בנה מספר נורות ניסוי, חלקן עם חיווט נוסף, פלטת מתכת, או [[רדיד אלומיניום]] בתוך הנורה, שהיה מופרד חשמלית מחוט הלהט. הוא חיבר [[אלקטרודה|אלקטרודת]] מתכת נוספת לחוט הלהט דרך [[גלוונומטר]]. כאשר לאלקטרודת המתכת היה יותר מטען שלילי מלחוט הלהט, לא עבר זרם ביניהם, מכיוון שהאלקטרודה פלטה אלקטרונים חדשים, אולם כאשר לאלקטרודה ניתן מטען חיובי ביחס לחוט הלהט האלקטרונים שנפלטו מחוט הלהט נמשכו לאלקטרודה וייצרו זרם. זרימה חד צדדית של זרם נקראה "אפקט אדיסון" (למרות השימוש במונח לתאר פליטה תרמיונית). אדיסון מצא שהזרם בין האלקטרודה לחוט הלהט גדל במהירות עם עליית המתח.
האפקט נתגלה מחדש על ידי [[תומאס אדיסון]] ב-[[1880]], כאשר ניסה לגלות את הסיבה לשבירה של [[חוט להט|חוטי להט]] ב[[נורה חשמלית|נורה]], והשחרה לא אחידה (כהה יותר בצד אחד של חוט הלהט) של הנורות. אדיסון בנה מספר נורות ניסוי, חלקן עם חיווט נוסף, פלטת מתכת, או [[רדיד אלומיניום]] בתוך הנורה, שהיה מופרד חשמלית מחוט הלהט. הוא חיבר [[אלקטרודה|אלקטרודת]] מתכת נוספת לחוט הלהט דרך [[גלוונומטר]]. כאשר לאלקטרודת המתכת היה יותר מטען שלילי מלחוט הלהט, לא עבר זרם ביניהם, מכיוון שהאלקטרודה פלטה אלקטרונים חדשים, אולם כאשר לאלקטרודה ניתן מטען חיובי ביחס לחוט הלהט האלקטרונים שנפלטו מחוט הלהט נמשכו לאלקטרודה וייצרו זרם. זרימה חד צדדית של זרם נקראה "אפקט אדיסון" (למרות השימוש במונח לתאר פליטה תרמיונית). אדיסון מצא שהזרם בין האלקטרודה לחוט הלהט גדל במהירות עם עליית המתח.
שורה 29: שורה 29:
<math>A_0 = {4 \pi m k^2 e \over h^3} = 1.20173 \times 10^6\,\mathrm{A\,m^{-2}\,K^{-2}}</math><br />
<math>A_0 = {4 \pi m k^2 e \over h^3} = 1.20173 \times 10^6\,\mathrm{A\,m^{-2}\,K^{-2}}</math><br />
</div>
</div>
כאשר m ו e הם המסה והמטען של האלקטרון, k - קבוע בולצמן, c - [[מהירות האור]] בריק, ו-h הוא [[קבוע פלאנק]].
כאשר m ו e הם המסה והמטען של האלקטרון, k - קבוע בולצמן, c - [[מהירות האור]] בריק, ו-h הוא [[קבוע פלאנק]].


בעוד ל A יש ערך תאורטי קבוע, בפועל הערך תלוי משמעותית בחומר הנבדק.
בעוד ל A יש ערך תאורטי קבוע, בפועל הערך תלוי משמעותית בחומר הנבדק.

גרסה מ־08:46, 10 בדצמבר 2018

תקריב של חוט להט תרמיוני בשפופרת המפיקה אור על-סגול

פליטה תרמיונית היא זרם של חלקיקים נושאי מטען ממשטח או מסוג אחר של מחסום פוטנציאלי חשמלי, שנגרם על ידי אנרגיית חום-רטט שמתגברת על הכוחות האלקטרוסטטיים המתנגדים. חלקיקים נושאי מטען עשויים להיות אלקטרונים או יונים, ולפעמים נקראים תרמיונים. המטען הכולל של החלקיקים הנפלטים (חיוביים או שליליים) יהיה שווה בגודל והפוך בסימן למטען שנותר במשטח הפולט.

הדוגמה הקלאסית לפליטה תרמיונית היא פליטה של אלקטרונים מקתודת מתכת מחוממת בריק (ידוע כאפקט אדיסון), אבל משתמשים במונח "פליטה תרמיונית" לתאר כל תהליך של פליטת מטען עקב חימום, גם כאשר המטען מועבר בין שני מוצקים.

תהליך זה קריטי בפעולה של מכשירים אלקטרוניים רבים, ויכול לשמש לקירור או ייצור כוח.
עוצמת זרם המטענים גדלה באופן קיצוני כאשר הטמפרטורה עולה, ופליטה בריק ממתכות נוטה להיות משמעותית בטמפרטורות מעל 1000 קלווין.

אפקט אדיסון בשפופרת ריק, דיודה מחוברת שתי קונפיגורציות, באחת יש זרם ובשנייה לא. החצים מסמנים תנועת אלקטרונים.

היסטוריה

התופעה נצפתה לראשונה ב-1873 על ידי דניאל לורדן בבריטניה. כאשר עבד עם חפצים טעונים, גילה לורדן שכדור ברזל לוהט בעל מטען שלילי, מאבד את המטען (על ידי פליטה לריק של אלקטרונים), הוא גם גילה שתופעה זו אינה מתרחשת כאשר הכדור טעון במטען חיובי.

האפקט נתגלה מחדש על ידי תומאס אדיסון ב-1880, כאשר ניסה לגלות את הסיבה לשבירה של חוטי להט בנורה, והשחרה לא אחידה (כהה יותר בצד אחד של חוט הלהט) של הנורות. אדיסון בנה מספר נורות ניסוי, חלקן עם חיווט נוסף, פלטת מתכת, או רדיד אלומיניום בתוך הנורה, שהיה מופרד חשמלית מחוט הלהט. הוא חיבר אלקטרודת מתכת נוספת לחוט הלהט דרך גלוונומטר. כאשר לאלקטרודת המתכת היה יותר מטען שלילי מלחוט הלהט, לא עבר זרם ביניהם, מכיוון שהאלקטרודה פלטה אלקטרונים חדשים, אולם כאשר לאלקטרודה ניתן מטען חיובי ביחס לחוט הלהט האלקטרונים שנפלטו מחוט הלהט נמשכו לאלקטרודה וייצרו זרם. זרימה חד צדדית של זרם נקראה "אפקט אדיסון" (למרות השימוש במונח לתאר פליטה תרמיונית). אדיסון מצא שהזרם בין האלקטרודה לחוט הלהט גדל במהירות עם עליית המתח.

בעקבות גילויים אלה ויליאם פריס פרסם מאמר מסכם בנושא, ואילו ג'ון פלמינג גילה שאפקט אדיסון יכול לשמש לגילוי גלי רדיו, והמשיך לפתח את שפופרת הריק בעלת שתי אלקטרודות, שנודעה בשם "דיודה", שאותה רשם כפטנט ב-16 בנובמבר 1904. דיודה זו יכולה לשמש כמכשיר הממיר ישירות הפרשי טמפרטורות לכוח חשמלי.

אוון וילאנס ריצ'רדסון עבד עם פליטה תרמיונית וקיבל פרס נובל לפיזיקה ב-1928 "עבור עבודתו על תופעת התרמיונים ובמיוחד עבור גילוי החוק הנושא את שמו".

חוק ריצ'רדסון

בכל מתכת יש אלקטרון אחד או שנים בכל אטום החופשיים לנוע מאטום לאטום. לעיתים מתייחסים לזה כ"ים של אלקטרונים". המהירויות שלהם מתפלגות באופן סטטיסטי, לא אחיד, ומדי פעם לאלקטרון תהיה מספיק מהירות לצאת מהמתכת מבלי להימשך חזרה פנימה. הגודל המינימלי של האנרגיה הנדרשת לאלקטרון לעזוב את המשטח נקרא "פונקציית עבודה". פונקציית העבודה היא תכונה של המתכת ועבור רוב המתכות היא בסדר גודל של כמה אלקטרון וולט. זרמים תרמיונים יכול להיות מוגברים על ידי הפחתת פונקציית העבודה. המטרה הרצויה הזאת יכולה להיות מושגת גם על ידי ציפוי חוט הלהט בשכבת תחמוצת כלשהי.

ב-1901, אוון ויליאמס ריצ'רדסון פרסם את תוצאות הניסוי שלו. הזרם מהחוט המחומם נראה כתלות אקספוננציאלית בטמפרטורה של החוט בצורה הדומה למשוואת ארניוס (Arrhenius). הצורה המודרנית של החוק (שהודגמה על ידי סול דושמן ב-1923, ולכן לפעמים קרויה משוואת ריצ'רדסון-דושמן) טוען כי הצפיפות של הזרם הנפלט J היא ביחס ישר לטמפרטורה T במשוואה:

כאשר T היא טמפרטורת המתכת בקלווין, W היא פונקציית העבודה של המתכת, k הוא קבוע בולצמן, ו-A הוא קבוע יחסות הידוע כקבוע ריצ'רדסון, ומתקבל מהנוסחה:


כאשר m ו e הם המסה והמטען של האלקטרון, k - קבוע בולצמן, c - מהירות האור בריק, ו-h הוא קבוע פלאנק.

בעוד ל A יש ערך תאורטי קבוע, בפועל הערך תלוי משמעותית בחומר הנבדק.

בגלל התלות האקספוננציאלית, הזרם גדל במהירות עם עליית הטמפרטורה כאשר
למשוואת הפליטה התרמיונית יש חשיבות עיקרית באלקטרוניקה, בעיקר בטכנולוגיה שמשתמשת בשפופרות ריק ( כגון מסכי CRT - טלוויזיות, מסכי מחשב).