לדלג לתוכן

שיטת הדלתה – הבדלי גרסאות

נוספו 3 בתים ,  לפני שנתיים
מ
אין תקציר עריכה
מ (הסבת תג ref לתבנית:הערה (תג))
מ
תגית: עריכת קוד מקור 2017
'''שיטת הדלתה''' [[סטטיסטיקה|בסטטיסטיקה]], שיטת הדלתה היא תוצאה המאפשרת את אמידת [[שונות|השונות]] של פונקציה של [[אמדן|אמד]] [[פרמטר סטטיסטי|לפרמטר]], כאשר [[התפלגות אסימפטוטית|התפלגותו האסימפטוטית]] של האמד היא [[התפלגות נורמלית|נורמלית]] [[סטיית תקן|וסטיית התקן]] של האמד ידועה או ניתנת לאמידה.
 
== היסטוריה ==
</math>, ונסמן ב-<math>\hat\beta_n</math> את [[נראות מקסימלית|אמדן הנראות המקסימלית]] ל-<math>\beta</math>. מכיוון שזהו אמד נראות מקסימלית ידוע כי התפלגותו היא אסימפטוטית נורמלית עם תוחלת <math>\beta</math> ושגיאת תקן <math>s>0</math>, כאשר <math>s</math> נאמדת על ידי שימוש [[האינפורמציה של פישר|באינפורמציה של פישר]]. חוקרים מתעניינים בדרך כלל בערך <math>OR=e^\beta</math> שמפורש [[יחס הסיכויים|כיחס הסיכויים]] של <math>Y</math> בהינתן <math>X</math>. מכיוון ש-<math>g(x)=e^x</math> היא פונקציה רציפה שנגזרתה רציפה, נקבל כי לאמדן יחס הסיכויים <math>e^{\hat\beta}</math> יש התפלגות אסימפטוטית נורמלית עם תוחלת <math>e^\beta</math>, ולאמוד את שגיאת תקן שלו על ידי <math>se^{\hat\beta}</math>.
 
מכאן נוכל לקבל כי [[רווח סמך]] ברמת סמך <math>100(1-\alpha)%</math> ליחס הסיכויים הינוהוא <math>e^{\hat\beta}\ \pm \ Z_{ \frac{\alpha}{2} }se^{\hat\beta}</math>. כן נוכל לבדוק את [[בדיקת השערות|ההשערה]] כי יחס הסיכויים שווה ל-1 על ידי [[סטטיסטי|הסטטיסטי]] <math>Z=\frac{e^{\hat\beta}-1}{se^{\hat\beta}}</math>.
 
==ראו גם==