מטריצה אורתוגונלית – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
ביטול גרסה: הבהרת חשיבות
מ איזוגי->אי זוגי - תיקון תקלדה בקליק
שורה 17: שורה 17:
המטריצות האורתוגונליות בעלות דטרמיננטה 1 נקראות "מטריצות אורתוגונליות מיוחדות", והן מרכיבות את תת-החבורה <math>\ SO_n(F)</math> של <math>\ O_n(F)</math>. בשדה מ[[מאפיין של שדה|מאפיין]] שונה מ-2, <math>\ SO_n(F) \triangleleft O_n(F)</math> היא תת-חבורה מאינדקס 2 (מעל שדה ממאפיין 2, שתי החבורות שוות). ה[[מטריצה סקלרית|מטריצות הסקלריות]] האורתוגונליות הן <math>\ \pm I</math>, ומגדירים את חבורות המנה <math>\ PO_n(F) =O_n(F)/\langle-I\rangle</math> ו- <math>\ PSO_n(F) = SO_n(F)/(\langle -I\rangle \cap SO_n(F))</math>.
המטריצות האורתוגונליות בעלות דטרמיננטה 1 נקראות "מטריצות אורתוגונליות מיוחדות", והן מרכיבות את תת-החבורה <math>\ SO_n(F)</math> של <math>\ O_n(F)</math>. בשדה מ[[מאפיין של שדה|מאפיין]] שונה מ-2, <math>\ SO_n(F) \triangleleft O_n(F)</math> היא תת-חבורה מאינדקס 2 (מעל שדה ממאפיין 2, שתי החבורות שוות). ה[[מטריצה סקלרית|מטריצות הסקלריות]] האורתוגונליות הן <math>\ \pm I</math>, ומגדירים את חבורות המנה <math>\ PO_n(F) =O_n(F)/\langle-I\rangle</math> ו- <math>\ PSO_n(F) = SO_n(F)/(\langle -I\rangle \cap SO_n(F))</math>.


המטריצה <math>\ -I</math>שייכת ל- <math>\ SO_n(F)</math>אם ורק אם n זוגי. לכן, כאשר n זוגי, ארבע החבורות <math>\ O_n, SO_n, PO_n, PSO_n</math>שונות זו מזו, ואילו כאשר n איזוגי, <math>\ O_n \cong SO_n \times \langle -I \rangle</math>ו- <math>\ PO_n \cong SO_n = PSO_n</math>.
המטריצה <math>\ -I</math>שייכת ל- <math>\ SO_n(F)</math>אם ורק אם n זוגי. לכן, כאשר n זוגי, ארבע החבורות <math>\ O_n, SO_n, PO_n, PSO_n</math>שונות זו מזו, ואילו כאשר n אי זוגי, <math>\ O_n \cong SO_n \times \langle -I \rangle</math>ו- <math>\ PO_n \cong SO_n = PSO_n</math>.


=== המקרה n=2 ===
=== המקרה n=2 ===

גרסה מ־21:17, 8 במאי 2020

באלגברה ליניארית, מטריצה אורתוגונלית היא מטריצה ריבועית שרכיביה ממשיים המקיימת את התנאי , כאשר היא מטריצת היחידה, ו- היא המטריצה המשוחלפת של . למטריצות כאלו יש דטרמיננטה שהיא 1+ או 1-. לכפל במטריצה כזו יש תכונה חשובה: הוא שומר על אורך של וקטורים, וגם על הזווית ביניהם. העמודות של מטריצה אורתוגונלית מהוות בסיס אורתונורמלי למרחב הווקטורי שממדו כמספר עמודות המטריצה, עם המכפלה הפנימית הסטנדרטית.

אפיונים שקולים

למטריצות אורתוגונליות ישנן מספר הגדרות שקולות, החשובות בהן הן:

  • , כלומר .
  • , כלומר שהכפל של וקטורים ב-משמר מכפלה סקלרית.
  • העמודות של המטריצה הן בסיס אורתונורמלי.
  • השורות של המטריצה הן בסיס אורתונורמלי.

2 הקריטריונים האחרונים דומים זה לזה והם שקולים מאחר שאם אורתוגונלית, כך גם .

חבורת המטריצות האורתוגונליות

אוסף המטריצות האורתוגונליות בגודל מעל שדה F סגור לכפל, והוא מהווה חבורה אלגברית שמקובל לסמן ב- . מעל שדה המספרים הממשיים, היא חבורה קומפקטית.

המטריצות האורתוגונליות בעלות דטרמיננטה 1 נקראות "מטריצות אורתוגונליות מיוחדות", והן מרכיבות את תת-החבורה של . בשדה ממאפיין שונה מ-2, היא תת-חבורה מאינדקס 2 (מעל שדה ממאפיין 2, שתי החבורות שוות). המטריצות הסקלריות האורתוגונליות הן , ומגדירים את חבורות המנה ו- .

המטריצה שייכת ל- אם ורק אם n זוגי. לכן, כאשר n זוגי, ארבע החבורות שונות זו מזו, ואילו כאשר n אי זוגי, ו- .

המקרה n=2

מעל שדה המספרים הממשיים, כוללת את מטריצות הסיבוב בכל זווית אפשרית. חבורה זו, שהיא אבלית, איזומורפית לחבורה המעגלית של המספרים המרוכבים בעלי נורמה 1, וגם לחבורת המנה . ליפוף כפול של המעגל (כלומר, זיהוי הקצוות ) נותן את אותה חבורה, ולכן . החבורה כוללת איבר נוסף, , המתאים לשיקוף סביב ציר ה-x, ואת כל המכפלות של בסיבובים. החבורה הזו אינה אבלית. גם כאן .

מטריצות אוניטריות

מטריצה אורתוגונלית היא מטריצה אוניטרית מעל הממשיים. מטריצה אוניטרית מקיימת: כאשר ותכונה הנובעת מזה היא שעמודותיה ושורותיה פורשות את . הערה:

תכונות של מטריצות אוניטריות

  • מטריצה הפיכה ו-
  • מטריצה אוניטרית שומרת מכפלה פנימית: (כאן נעזרנו בתכונות הצמוד ההרמיטי במכפלה פנימית)
  • מטריצה אוניטרית שומרת על נורמה, . כתוצאה מכך, ערך מוחלט של כל ערך עצמי שלה הוא 1.
  • אם A אוניטרית ו- גם הן אוניטריות

ראו גם

קישורים חיצוניים

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.