פונקציה חד-חד-ערכית ועל – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
שורה 6: שורה 6:
מכירת כרטיסי קולנוע יוצרת התאמה בין קהל הצופים לבין הכסאות שבאולם הקולנוע. כאשר כל הכרטיסים נמכרו, זו התאמה חד-חד-ערכית ועל - לכל כיסא באולם הקולנוע מותאם צופה אחד ויחיד. כאשר לא כל הכרטיסים נמכרו, זו התאמה חד-חד-ערכית שאינה על - יש כסאות פנויים באולם.
מכירת כרטיסי קולנוע יוצרת התאמה בין קהל הצופים לבין הכסאות שבאולם הקולנוע. כאשר כל הכרטיסים נמכרו, זו התאמה חד-חד-ערכית ועל - לכל כיסא באולם הקולנוע מותאם צופה אחד ויחיד. כאשר לא כל הכרטיסים נמכרו, זו התאמה חד-חד-ערכית שאינה על - יש כסאות פנויים באולם.


פונקציה המתאימה לכל מספר זוגי את החצי שלו (כלומר מתאימה ל-1 את 1, ל-4 את 2, ל-6 את 3 וכו') היא פונקציה חד-חד-ערכית ועל מקבוצת המספרים הזוגיים לקבוצת ה[[מספר טבעי|מספרים הטבעיים]].
פונקציה המתאימה לכל מספר זוגי את החצי שלו (כלומר מתאימה ל-2 את 1, ל-4 את 2, ל-6 את 3 וכו') היא פונקציה חד-חד-ערכית ועל מקבוצת המספרים הזוגיים לקבוצת ה[[מספר טבעי|מספרים הטבעיים]].


[[קובץ:Algebra1 fnz fig042 par.svg|150px|ממוזער|שמאל|גרף פונקציה <math>y=x^2</math> בתחום <math>[-2,2]</math>]]
[[קובץ:Algebra1 fnz fig042 par.svg|150px|ממוזער|שמאל|גרף פונקציה <math>y=x^2</math> בתחום <math>[-2,2]</math>]]

===דוגמאות רציפות===
===דוגמאות רציפות===
הפונקציה <math>y=x^2</math> היא חד-חד-ערכית ועל בתחום <math>f:[0, \infty) \rightarrow [0, \infty)</math>, משום שכל ערך של y בקטע הממשי <math>[0, \infty)</math> מתקבל בדיוק פעם אחת. הפונקציה איננה חד-חד-ערכית בתחום <math>f:(-\infty, \infty) \rightarrow [0, \infty)</math> משום שכל ערך של y בקטע הממשי <math>(0, \infty)</math> מתקבל פעמיים (הערך 4, למשל, הוא <math>f(2)</math> וגם <math>f(-2)</math>).
הפונקציה <math>y=x^2</math> היא חד-חד-ערכית ועל בתחום <math>f:[0, \infty) \rightarrow [0, \infty)</math>, משום שכל ערך של y בקטע הממשי <math>[0, \infty)</math> מתקבל בדיוק פעם אחת. הפונקציה איננה חד-חד-ערכית בתחום <math>f:(-\infty, \infty) \rightarrow [0, \infty)</math> משום שכל ערך של y בקטע הממשי <math>(0, \infty)</math> מתקבל פעמיים (הערך 4, למשל, הוא <math>f(2)</math> וגם <math>f(-2)</math>).

גרסה מ־21:54, 28 בספטמבר 2020

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה, פונקציה חד-חד-ערכית ועל היא פונקציה , מהקבוצה לקבוצה , שעבורה לכל קיים יחיד כך ש . בתנאי זה, קיומו של a מבטא את העובדה שהפונקציה היא פונקציה על, והיחידות שלו (כלומר העובדה שלא קיימים שונים שעבורם ) מבטאת את העובדה שהפונקציה חד-חד-ערכית.

דוגמאות

דוגמאות בדידות

מכירת כרטיסי קולנוע יוצרת התאמה בין קהל הצופים לבין הכסאות שבאולם הקולנוע. כאשר כל הכרטיסים נמכרו, זו התאמה חד-חד-ערכית ועל - לכל כיסא באולם הקולנוע מותאם צופה אחד ויחיד. כאשר לא כל הכרטיסים נמכרו, זו התאמה חד-חד-ערכית שאינה על - יש כסאות פנויים באולם.

פונקציה המתאימה לכל מספר זוגי את החצי שלו (כלומר מתאימה ל-2 את 1, ל-4 את 2, ל-6 את 3 וכו') היא פונקציה חד-חד-ערכית ועל מקבוצת המספרים הזוגיים לקבוצת המספרים הטבעיים.

גרף פונקציה בתחום

דוגמאות רציפות

הפונקציה היא חד-חד-ערכית ועל בתחום , משום שכל ערך של y בקטע הממשי מתקבל בדיוק פעם אחת. הפונקציה איננה חד-חד-ערכית בתחום משום שכל ערך של y בקטע הממשי מתקבל פעמיים (הערך 4, למשל, הוא וגם ).

הפונקציה היא חד-חד-ערכית ועל בתחום , משום שכל ערך של y בקטע הממשי מתקבל בדיוק פעם אחת.

דיאגרמות להמחשה

תכונות ושימושים

אם קיימת פונקציה כזו, הקבוצות ו- נקראות "שקולות" והן בעלות אותה עוצמה.
פונקציה היא חד-חד-ערכית ועל אם ורק אם היא הפיכה, ולכן יחס השקילות הזה בין קבוצות הוא יחס סימטרי.

אם על הקבוצות מוגדר מבנה נוסף (פעולות אלגבריות, טופולוגיה, מטריקה וכדומה), אז פונקציה חד-חד-ערכית ועל ביניהן השומרת על המבנה נקראת איזומורפיזם.

פונקציה חד-חד-ערכית ועל מקבוצה אל עצמה נקראת תמורה.
אוסף התמורות על קבוצה הוא חבורת הסימטריות של הקבוצה; לדוגמה, הפונקציה המתאימה לכל מספר שלם את העוקב שלו, היא תמורה על המספרים השלמים. פונקציות חד-חד-ערכיות ועל הן מאבני הבניין של צפנים סימטריים מודרניים רבים בקריפטוגרפיה.

ראו גם

קישורים חיצוניים

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.