פונקציה מעריכית – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
Idioma-bot (שיחה | תרומות)
מ בוט מוסיף: lt:Eksponentinė funkcija
SassoBot (שיחה | תרומות)
מ בוט משנה: ar:دالة أسية
שורה 45: שורה 45:


[[en:Exponential function]]
[[en:Exponential function]]
[[ar:الدالة الأسية]]
[[ar:دالة أسية]]
[[bs:Eksponencijalna funkcija]]
[[bs:Eksponencijalna funkcija]]
[[ca:Funció exponencial]]
[[ca:Funció exponencial]]

גרסה מ־06:43, 21 באפריל 2009

פונקציה מעריכית היא פונקציה מתמטית מהצורה . המספר נקרא בסיס הפונקציה. כאשר מגדירים את הפונקציה כפונקציה ממשית, מגבילים לרוב את בסיס החזקה ודורשים .

דוגמה:

  • אם אז
  • אם אז
גרפים של פונקציות אקספוננציאליות אחדות

המספר e הוא בסיס מיוחד לפונקציה המעריכית. ייחוד זה בא לידי ביטוי, למשל, בכך שנגזרת פונקציה מעריכית ש-e הוא בסיסה זהה לפונקציה עצמה. פונקציה מעריכית שבסיסה הוא e נקראת אקספוננט.

הפונקציה ההופכית לפונקציה המעריכית היא פונקציית הלוגריתם.

כפונקציה ממשית, פונקציה מעריכית היא פונקציה עולה אם בסיסה גדול מ-1. אם הוא 1 היא הפונקציה הקבועה 1, ואם הוא קטן מ-1 וגדול מ-0 היא יורדת. בפונקציות מעריכיות ממשיות, מגבילים את בסיס הפונקציה המעריכית למספרים חיוביים בלבד, מכיוון שבבסיס שלילי, הפונקציה לא תהיה מוגדרת עבור מספרים מסוימים (0.5 וכדומה).

פונקציה מעריכית ממשית גדלה מהר יותר מכל פולינום (אם היא פונקציה מעריכית ו- פולינום, מסמנים ), אבל מהר פחות מעצרת ().

הגדרת הפונקציה המעריכית

במסגרת החשבון האינפיניטסימלי, הדרך הקלה והמהירה ביותר להגדיר את הפונקציה המעריכית, היא באמצעות האקספוננט ( ) והלוגריתם הטבעי, כאשר את הפונקציה , ואת הקבוע e מגדירים באמצעות טור חזקות: . מבחני ההתכנסות הסטנדרטיים מראים שהטור מתכנס לכל ערך ממשי x, ולכן ניתן להגדיר באופן טבעי .

את הפונקציה הכללית מגדירים:

ניתן להגדיר באופן כללי את הפונקציה המעריכית באמצעות פיתוח חוקי החזקות של חתכי דדקינד מתוך פעולת החזקה של המספרים הרציונליים, בלי תלות בפונקציית האקספוננט.

תכונות הפונקציה המעריכית

כל תכונות הפונקציה המעריכית נובעות מתכונות האקספוננט. כך, הפונקציה המעריכית היא פונקציה רציפה וגזירה. הפונקציה המעריכית הפיכה כאשר בסיסה שונה מאחד, כלומר (כלומר כאשר ). הפונקציות המעריכיות מעבירות חיבור לכפל, וכפל לחזקה כלומר מתקיימות התכונות:

למעשה, קל לראות שאם פונקציה כלשהי מעבירה כפל לחזקה (מקיימת את התכונה השנייה), אז היא בהכרח פונקציה מעריכית. לעומת זאת פונקציה שמעבירה חיבור לכפל (מקיימת את התכונה הראשונה) איננה בהכרח פונקציה מעריכית, אם היא לא רציפה.

דוגמאות

ראו גם