לדלג לתוכן

החבורה הסימטרית – הבדלי גרסאות

אין שינוי בגודל ,  לפני 12 שנים
כאמור, '''חילוף''' היא תמורה שמחליפה שני איברים זה בזה ואת השאר היא משאירה במקום. ניתן להוכיח שכל תמורה יכולה להיכתב כמכפלה של חילופים. לדוגמה, קל לבדוק שכל מחזור מקיים את השיווין <math>(a\ b\ c\ d \dots y\ z)=(bc)(cd)\dots(yz)(za)</math>.
 
תמורה שניתן להציגה כמכפלה של [[מספר זוגי]] של חילופים נקראת תמורה זוגית, ואילו תמורה שהיא מכפלה של מספר אי-זוגי של חילופים נקראת תמורה אי-זוגית. למרות שההצגה של תמורה בתור מכפלת חילופים אינה יחידה, הזוגיות של מספר החילופים בכל שתי הצגות תמיד תהייהתהיה זהה, ולכן מושג הזוגיות של תמורה מוגדר היטב. בדוגמה של כפל התמורות, <math>\ g</math> היא מכפלה של שלוששלושה חילופים ולכן היא אי-זוגית בעוד <math>\ f</math> היא תמורה זוגית.
 
היות ומספר החילופים במכפלה של שתי תמורות הוא פשוט ''סכום'' מספרי החילופים בכל אחת מהתמורות, הזוגיות של מכפלת תמורות פועלת לפי אותם החוקים של חיבור מספרים שלמים. כלומר, מכפלה של תמורה זוגית עם תמורה אי-זוגית היא אי-זוגית, וכל צירוף אחר הוא זוגי.
משתמש אלמוני