משפט אוילר (גאומטריה)

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

משפט אוילר בגאומטריה, הקרוי של שמו של המתמטיקאי לאונרד אוילר, קובע כי המרחק \ d בין מרכז המעגל החוסם ומרכז המעגל החסום של משולש מקיים: \frac{1}{R+d}+\frac{1}{R-d} = \frac{1}{r}, כאשר \ R הוא רדיוס המעגל החוסם ו-\ r הוא רדיוס המעגל החסום.

הוכחה[עריכת קוד מקור | עריכה]

תרשים של ההוכחה (כולל ההוכחה עצמה) נוצר על ידי תוכנת GeoGebra

נסמן ב-O את מרכז המעגל החוסם את המשולש ABC, וב-I את מרכז המעגל החסום. נאריך את AI עד שיפגש עם המעגל החוסם ונסמן נקודה זאת ב-L, ואז נקודה L היא אמצע הקשת BC. נעביר את הקוטר מ-L דרך O כך שיפגש עם המעגל החוסם בנקודה M. מנקודה I נעביר אנך ל-AB, ונסמן את נקודת המפגש ב-D. ואז ID=r. על פי משפט תאלס זווית LBM ישרה. זווית LMB שווה לזווית IAD (זוויות היקפיות שנשענות על אותה קשת), ולכן משולשים MBL ו-ADI דומים, ומכאן ID × ML = AI × BL. לכן 2Rr = AI × BL. מתקיים

\angle BIL = \angle {A \over 2} + {\angle ABC \over 2} וכן
\angle IBL = \angle {ABC \over 2} + \angle CBL = \angle {ABC \over 2} + \angle {A \over 2} (זווית חיצונית שווה לסכום שתי הזוויות האחרות במשולש),

ולכן זווית BIL שווה לזווית IBL, ומכאן BL=IL ו- AI × IL = 2Rr. נאריך את OI משני צדדיו ונסמן את נקודות המפגש ליד O ו-I ב-P ו-Q בהתאמה. מתקיים PI × QI = AI × IL = 2Rr, ומכאן R + d)(R − d) = 2Rr), ולכן (d2 = R(R − 2r. מש"ל.

הכללות[עריכת קוד מקור | עריכה]

נסמן כמקודם ב-R,r,d את הרדיוסים של שני מעגלים ואת המרחק בין המרכזים שלהם, ונסמן \ \alpha = \frac{r}{R+d} ו-\ \beta = \frac{r}{R-d}. נאמר ששני המעגלים הם שותפי-n אם אחד מהם חוסם והשני חסום במצולע בעל n צלעות. לפי משפט אוילר, שני המעגלים הם שותפי-3 אם \alpha+\beta = 1. קיים תנאי דומה לכך ששני מעגלים יהיו שותפי-4 (כלומר, המעגל החוסם והמעגל החסום של איזשהו מרובע, המוכרח להיות במקרה כזה, בעת ובעונה אחת, מרובע משיקים ומרובע ציקלי): \ \alpha^2+\beta^2 = 1 (זהו משפט פס, (אנ')). יש הכללה לנוסחה זו במונחי הפונקציה אליפטית של יעקובי ואינטגרל אליפטי שלם מסוג ראשון, [1]. בסוף המאה ה-18 ותחילת המאה ה-19 התגלו קשרים פולינומיים מפורשים עבור ערכים שונים של מספר הצלעות n. לדוגמה, התנאי לכך ששני המעגלים הם שותפי-5 הוא \ (\alpha+\beta+1)^3 = 4(\alpha^3+\beta^3+1); והתנאי לכך שיהיו שותפי-6 הוא 3+(\beta^2-\alpha^2)^2= 2(\alpha^2+\beta^2).

כעת נתבונן בשני מעגלים C,D, כך ש-C מוכל בפנים של D. מכל נקודה P על D אפשר להעביר משיק ל-C (נאמר בכיוון מחוגי השעון), הפוגע שוב ב-D בנקודה שנסמן ב-P'. באופן כזה מוגדרות הנקודות \ P'' = (P')', ‏\ P''' = (P'')', וכן הלאה, ומסמנים באינדוקציה \ P^{(n)} = {P^{(n-1)}}'. אם P'''=P, פירושו של דבר הוא ש-P,P',P'' הם הקודקודים של משולש החוסם את C וחסום ב-D. אם P''''=P, אז P,P',P'',P''' הם הקודקודים של מרובע החוסם את C וחסום ב-D, וכן הלאה. משפט פונסלה (על שמו של ז'אן-ויקטור פונסלה, (אנ')) קובע שאם \ P^{(n)} = P לנקודה P כלשהי כל D, אז תכונה זו נכונה לכל נקודה P על D; כלומר, העובדה שהעברת משיק n פעמים חוזרת לנקודת ההתחלה היא תכונה של המעגלים C,D, ולא של הנקודה P. המשפט מתקיים אפילו אם C,D הם אליפסות, ולאו דווקא מעגלים.

מקורות[עריכת קוד מקור | עריכה]

  • Geometry Revisited, H.S.M. Coxeter and S.L Greitzer, Anneli Lax New Mathematical Library, Vol 19; משפט 2.12.
  • A Mathematical Gift II, K Ueno, K Shiga and Sh Morita; Mathematical World Vol 20, AMS, 2004.

קישורים חיצוניים[עריכת קוד מקור | עריכה]