נסג
בטופולוגיה אלגברית, נסג (Retract) של מרחב טופולוגי הוא תת-מרחב אליו אפשר לסגת מהמרחב כולו על ידי פונקציה רציפה. נסג עיוותי (Deformation retract) הוא, אינטואיטיבית, תת-מרחב אליו ניתן להשתנות (או להתעוות) מהמרחב כולו בצורה רציפה.
אחת השאלות הבסיסיות בטופולוגיה אלגברית היא אילו תתי מרחבים של מרחב טופולוגי הם נסג/נסג עיוותי שלו.
הגדרה
[עריכת קוד מקור | עריכה]יהי מרחב טופולוגי, ו- תת-מרחב שלו. נאמר כי הוא נסג של , אם קיימת העתקה רציפה כך ש-. המיפוי נקרא לעיתים נסיגה.
בשקילות, אם נסמן ב- את העתקת ההכלה יש לדרוש כי , פונקציית הזהות על .
ייקרא נסג עיוותי (Deformation retract) אם קיימת הומוטופיה כך ש-
ההומוטפיה נקראת לעיתים נסיגה עוויתית. במילים אחרות, כזו היא הומוטופיה בין העתקת הזהות והעתקת נסיגה.
הערה: לעיתים בהגדרת נסג עיוותי מחלישים את הדרישה השנייה ל-, ואז להגדרה לעיל קוראים נסג עיוותי חזק. לאורך הערך נעסוק רק בנסג עיוותי חזק, וכאן הוא ייקרא פשוט נסג עיוותי.
נסגים והחבורה היסודית
[עריכת קוד מקור | עריכה]קיים קשר הדוק בין נסגים לבין החבורה היסודית הראשונה של מרחב קשיר מסילתית סביב (כל) נקודה , אותה נסמן .
ראשית, אם נסג ו- העתקת ההכלה, אז ההעתקה , הנתונה על ידי היא חד חד ערכית. יתרה מזאת, אם נסג עיוותי, איזומורפיזם חבורות. כלומר - למרחב טופולוגי ולנסג עיוותי שלו אותה חבורה יסודית.
טענות אלו עוזרות להראות למשל שתתי מרחבים מסוימים אינם מהווים נסג (ראו דוגמאות).
דוגמאות
[עריכת קוד מקור | עריכה]- בקבוצה קמורה (עם הטופולוגיה הממשית סטנדרטית) כל תת-מרחב הוא נסג.
- כל נסג עיוותי הוא נסג.
- נסג של מרחב כוויץ הוא מרחב כוויץ.
- הספירה ה- ממדית במרחב היא נסג עיוותי, על ידי ההעתקה
- איננו נסג של העיגול ה-2 ממדי , לפי השיקול לעיל על החבורות היסודיות - כאן , אבל , ואין בין הראשונה לשנייה העתקה חד-חד-ערכית! מתוצאה זו ניתן להסיק בקלות את משפט נקודת השבת של בראואר.
- נסג עיוותי של העיגול ה-2 ממדי בלי הראשית, , ולכן יש להם אותה חבורה יסודית, כלומר .
- השפה של טבעת מביוס איננה נסג של הטבעת.
- לכל , תת-המרחב של הטורוס הוא נסג אך לא נסג עיוותי.