עצרת (מתמטיקה)

מתוך ויקיפדיה, האנציקלופדיה החופשית

במתמטיקה, עֲצֶרֶת (באנגלית: Factorial) היא מכפלת כל המספרים הטבעיים מ־1 ועד למספר נתון.

למשל, "4 עצרת" היא המכפלה .

לציון עצרת של שימש הסימן , אך סימן זה לא היה נוח למדפיסים. בעקבות הצעתו של המתמטיקאי כריסטיאן קראמפ משנת 1808, מקובל לסמן את העצרת בסימן "!", כלומר, .

העצרת היא פעולה אונארית שאותה אפשר להגדיר ברקורסיה לפי הנוסחה ותנאי ההתחלה .

סדרת העצרות של המספרים הטבעיים היא סדרה A000142 באתר OEIS – האנציקלופדיה המקוונת לסדרות של מספרים שלמים.

הערך !0[עריכת קוד מקור | עריכה]

יש בדיוק דרך אחת לסדר 0 איברים (היינו, לא לשבץ אף איבר באף מקום), ולכן . תוצאה זו מתאימה למוסכמה לפיה ערכה של מכפלה ריקה הוא תמיד 1, וכן להגדרת העצרת באינדוקציה ().

הגדרה זו שימושית גם לנוסחאות שונות בקומבינטוריקה, כגון הנוסחה לבחירת איברים מתוך איברים, שעבור (כלומר בחירת כל האיברים) מקבלת את הצורה .

ההתאמה בין ערכי !n לנוסחת סטירלינג

קירוב[עריכת קוד מקור | עריכה]

עבור גדול, ניתן להשיג קירוב טוב לערך של באמצעות נוסחת סטירלינג, שקובעת כי .

קצב הגידול[עריכת קוד מקור | עריכה]

ערכיה של הפונקציה נוסקים במהירות רבה ביחס לפונקציות נפוצות אחרות (דוגמת פולינומים ואף פונקציות מעריכיות). נוסחת סטירלינג מראה שעבור n גדול מספיק, מתקיים לכל a קבוע.

בקומבינטוריקה[עריכת קוד מקור | עריכה]

העצרת מופיעה בקומבינטוריקה על כל צעד ושעל, משום ש־ הוא מספר התמורות של n איברים, כלומר, מספר הדרכים לסדר n איברים ב־n מקומות. העצרת מופיעה גם בפיתוח טיילור, משום שהנגזרת ה־־ית של המונום שווה ל־.

העצרת מופיעה בספר יצירה הקדום (פרק רביעי, משנה י"ב), ובעקבותיו גם במקורות רבים אחרים במיסטיקה היהודית. תפקידה שם הוא לספור את המלים השונות שאפשר להרכיב מאותיות נתונות, תוך שימוש בכל האותיות וללא חזרה, והיא נקראת "בניה" - "שתי אבנים בונות שני בתים, שלוש אבנים בונות שישה בתים, ...". הספר מגיע עד לחישוב של 7 עצרת, ו"מכאן ואילך, צא וחשוב (וחשב), מה שאין העין יכולה לראות, ואין הפה יכולה לדבר, ואין האזן יכולה לשמוע".[1]

באנליזה מתמטית[עריכת קוד מקור | עריכה]

העצרת מופיעה בהקשרים שונים באנליזה מתמטית. דוגמאות:

.

פונקציית גמא[עריכת קוד מקור | עריכה]

פונקציית גמא היא פונקציה מרוכבת המהווה מעין הכללה של פונקציית העצרת למספרים שאינם בהכרח שלמים. הפונקציה מוגדרת על כל המישור המרוכב למעט הנקודות , לפי האינטגרל . באמצעות אינטגרציה בחלקים ניתן לראות שהיא מקיימת את הזהות . חישוב ישיר מראה ש־, ולכן לכל n טבעי.

עצרת כפולה[עריכת קוד מקור | עריכה]

ערך מורחב – עצרת כפולה

עצרת כפולהאנגלית: Double factorial) היא פונקציה המזכירה את העצרת, אך בה מוכפלים רק ערכים בעלי אותה זוגיות. עבור שלם ואי-שלילי, מוגדרת העצרת הכפולה , כאשר .

מימוש בתוכנה[עריכת קוד מקור | עריכה]

במרבית שפות התכנות פונקציה לחישוב עצרת איננה חלק מהשפה, אך קל ליצור אחת כזו, בלולאה המבצעת את פעולות הכפל הנדרשות או כפונקציה רקורסיבית.

בכלי עזר לחישוב קיימת פונקציית עצרת. באקסל של מיקרוסופט, וכן ב־calc של אופן אופיס, היא קרויה Fact, קיצור של המונח האנגלי Factorial. בתצוגה המדעית של המחשבון של מערכת ההפעלה Windows מופיע כפתור לחישוב עצרת.

הגידול המהיר בערך התוצאה של פונקציית העצרת גורם לכך שבמסגרת המגבלות של החומרה והתוכנה מוגבל חישוב לערכי קטנים יחסית. התוצאה הגדולה ביותר שניתן לרשום במילה של 32 סיביות היא , ובמילה של 64 סיביות - . באקסל ניתן לחשב עד , שהיא העצרת הגדולה ביותר שקטנה מ־21,024 (מספר בן 1,024 סיביות), בתוכנת המחשבון של מערכת ההפעלה Windows10 (64 סיביות) ניתן לחשב עד (~).

ערכי עצרת גדולים מחושבים בדרך כלל באמצעות נוסחת סטירלינג, הנותנת קירוב של התוצאה. בתורת המספרים ובקומבינטוריקה נחוץ לעיתים חישוב עצרת לערכים גדולים מאוד. לשם כך נדרשת כתיבה של פונקציה מיוחדת, ונוצר צורך בבחירת אלגוריתם יעיל, כדי לקבל תוצאות תוך זמן סביר.

ערכי עצרת[עריכת קוד מקור | עריכה]

ערכי עצרת עד 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 6 24 120 720 5,040 40,320 362,880 3,628,800 39,916,800 479,001,600 6,227,020,800 87,178,291,200 1,307,674,368,000

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ ספר יצירה, וראה גם ב: Wilson, Robin; Watkins, John J.; Graham, Ronald (2013). Combinatorics: Ancient & Modern. Oxford University Press. p. 111. מסת"ב 978-0-19-965659-2.