עקמומיות גיאודזית

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש
Incomplete-document-purple.svg
יש להשלים ערך זה: בערך זה חסר תוכן מהותי.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.

בגאומטריה דיפרנציאלית, העקמומיות הגיאודזית אנגלית: Geodesic curvature) של עקום נתון היא גודל המודד כמה רחוק העקום מלהיות מסילה גאודזית. בתוך יריעה נתונה , העקמומיות הגיאודזית היא פשוט העקמומיות הרגילה של העקום הנח בה. לעומת זאת, כאשר העקום חייב להימצא בתוך תת-יריעה של (למשל, במקרה של עקומים על גבי משטח נתון), העקמומיות הגיאודזית מתייחסת לעקמומיות של "הנצפית" מתוך תת-היריעה והיא שונה באופן כללי מהעקמומיות הנצפית של ביריעה בה היא משוכנת (כלומר ב- ). העקמומיות של כפי שנצפית ביריעה הגדולה יותר תלויה בשני גורמים: העקמומיות של תת-היריעה בכיוון של (העקמומיות הנורמלית ), שתלויה רק בכיוון של העקום, והעקמומיות של הנראית מתת היריעה (העקמומיות הגיאודזית ). הקשר המתמטי בין אלו הוא . בפרט, לעקומים גיאודזיים על יש עקמומיות גיאודזית אפס (הם "ישרים"), כך ש-, מה שמסביר מדוע הם נראים עקומים במרחב המקיף בו משוכנת היריעה.

מבחינה היסטורית, מושג העקמומיות הגיאודזית קדם למושג היריעה, כך שקודם הוכח שהעקמומיות הגיאודזית המוגדרת כ- היא אכן גודל פנימי "שמור" של המשטח.

הגדרה מתמטית[עריכת קוד מקור | עריכה]

כדי לכמת את העקמומיות הגיאודזית יש להתאים לכל נקודה על המשטח בנייה של בסיס אורתונורמלי כך ששני וקטורים שלו יפרשו את המישור המשיק למשטח בנקודה הספציפית, והווקטור השלישי יהיה הנורמל למשטח באותה נקודה. לאור ההתאמה הזאת, העקמומיות הגיאודזית של עקום בנקודה מוגדרת כקצב הסיבוב של הווקטור המשיק לעקום מסביב לוקטור הנורמל למשטח , כאשר מתקדמים במהירות קבועה לאורך העקומה. הגדרה זאת כללית יותר מזו של עקמומיות של עקומה במישור ומכילה אותה; ההבדל החישובי נעוץ בכך שבעוד שבמישור וקטור הנורמל לא משנה את כיוונו, על גבי משטח כללי גם המשיק לעקומה וגם וקטור הנורמל משנים את כיוון ההצבעה שלהם במרחב.

כעת נוכיח שהגדרה זאת מוליכה לביטוי

דוגמה[עריכת קוד מקור | עריכה]

נניח ש- היא ספירת היחידה במרחב אוקלידי תלת-ממדי. העקמומיות הנורמלית של היא זהותית אחת, ללא קשר לכיוון החתך. למעגלים גדולים יש עקמומיות , כך שיש להם עקמומיות גיאודזית אפס, ולכן הם עקומים גיאודזיים. ל-"מעגלים קטנים" בעלי רדיוס יש עקמומיות ועקמומיות גיאודזית . באופן כללי, בגאומטריה הלא אוקלידית שמתקיימת על פני משטחים עקומים, עקומים בעלי עקמומיות גיאודזית קבועה שונה מאפס ניתנים למידול כמעגלים.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]