פונקציית בטא של דיריכלה

מתוך ויקיפדיה, האנציקלופדיה החופשית
פונקציית בטא של דיריכלה

במתמטיקה, פונקציית בטא של דיריכלה הנקראת על שם יוהאן פטר גוסטב לז'ן דיריכלה היא פונקציה אשר קשורה לפונקציית זטא של רימן. פונקציית בטא של דיריכלה מוגדרת על ידי :

,

או

.

הפונקציה מוגדרת לכול מספר מרוכב שמקיים . אפשר גם להגדיר את פונקציית בטא של דיריכלה על ידי פונקציית פוליגמא אשר מאפשרת הכללה לכול מספר בתחום המישור המרוכב.

.

המשוואה הפונקציונלית של פונקציית בטא של דיריכלה (אשר מוגדרת לכול מספר מרוכב) היא

כאשר היא פונקציית גמא.

ערכים מיוחדים[עריכת קוד מקור | עריכה]

הנה כמה ערכים מיוחדים של פונקציית בטא של דיריכלה

,
,
,

( G נקרא קבוע קטלן)

,
,
,
,

כאשר היא מוגדרת להיות פונקציית פוליגמא. בצורה יותר כללית, לכל מספר טבעי :

,

כאשר הוא מספר אוילר ה--י.

על ידי הכללה אפשר להסיק שלכל מספר טבעי :

.

קישורים חיצוניים[עריכת קוד מקור | עריכה]