פורטל:מתמטיקה/מאמר נבחר/18

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

אינטגרל קווי (לעיתים גם אינטגרל לאורך עקום, אינטגרל מסלולי או אינטגרל מסילתי) הוא אינטגרל המחושב לאורך מסילה במרחב, ולאו דווקא לאורך קטע ממשי. כמו האינטגרל הרגיל, האינטגרל הקווי מסכם ערכים של פונקציה נתונה ומשקלל אותם לפי אורך המסילה, באופן המכליל סיכום של מספר סופי של ערכים. הפונקציה שאת האינטגרל שלה מחשבים עשויה לקבל ערכים ממשיים, או ערכים וקטוריים בכל מרחב בנך (ובכלל זה המרחב האוקלידי).

הצורך באינטגרל קווי עולה בעת ניתוח גדלים הקשורים בתנועה במסלול שאינו ישר, או בתכונות פיזיקליות של גוף עקום, כגון חוט דק. בדרך זו, ניתן לחשב גדלים כדוגמת אורך, מסה, או מטען חשמלי. האינטגרל הקווי מחשב כוח הפועל על גוף המיוצג על ידי עקום, או עבודה של כוח המניע מסה לאורכו, כמו גם התנהגות של שדות פיזיקליים (למשל, שדה חשמלי) על פני מסלולים.

לאינטגרלים קוויים של פונקציות אנליטיות או הרמוניות ישנן תכונות מתמטיות הקושרות אותם לערכי הפונקציה במשטח שאותו סוגר העקום. בקשרים אלה עוסקים כמה משפטים באנליזה מרוכבת, באנליזה וקטורית ובאנליזה הרמונית.

לערך המלא