קירוב WKB

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

בפיזיקה מתמטית, קירוב WKB או שיטת WKB היא שיטת קירוב ליניארי לצורך מציאת פתרונות של משוואות דיפרנציאליות חלקיות עם מקדמים המשתנים במרחב. בדרך כלל, נעשה שימוש בשיטה זו עבור חישוב סמי-קלאסי במכניקה קוונטית, שבו פונקציית הגל מתנהגת כפונקציה אקספוננטציאלית, המתפשטת סמי-קלאסית במרחב ואשר או המשרעת או הפאזה של פונקציה זו משתנים באופן איטי.

מקור השם WKB הוא בראשי תיבות של המדענים ונצל-קרמרס-ברילואן (Wentzel–Kramers–Brillouin). קירוב זה ידוע גם כקירוב LG או קירוב ליוביל-גרין (Liouville–Green). לעיתים הוא נקרא  JWKB או WKBJ כאשר ה-J מתייחסת לג'פרי (Jeffreys).

היסטוריה[עריכת קוד מקור | עריכה]

קירוב WKB קרוי על שם הפיזיקאים: גרגור ונצל, הנס קרמרס ולאון ברילואן (Wentzel–Kramers–Brillouin), אשר פיתחו אותה בשנת 1926.

בשנת 1923, פיתח המתמטיקאי הבריטי הרולד ג'פרי שיטה כללית של קירוב לפתרונות משוואות ליניאריות דיפרנציאליות מסדר שני. שנתיים מאוחר יותר פותחה משוואת שרדינגר וונצל, קרמרס, וברילואן שלא היו מודעים לעבודה המוקדמת של ג'פרי, פיתחו קירוב ליניארי כללי שניתן ליישמו כפתרון למשוואת שרדינגר.[1]

מקורות מוקדמים יותר לשיטה ניתן למצוא בעבודתם של : קרליני (1817), ליוביל (1837), גרין 1837, ריילי (1912) וגנז בשנת 1915. יש הסבורים כי ניתן לזהות את ז'וזף ליוביל וג'ורג' גרין כאבות השיטה ולכן קירוב זה ידוע גם כקירוב LG או קירוב ליוביל-גרין (Liouville–Green).[2]

תרומתם של ונצל, קרמרס, וברילואן לשיטה הייתה הכללת הטיפול של נקודות מפנה (אנ'), על ידי "תפירת" הפתרונות התנודתיים והזמניים (אנ') משני צדי נקודת המפנה. לדוגמה, פתרון משוואת שרדינגר עם גבעת אנרגיה פוטנציאלית (אזור סביב מקסימום מקומי של אנרגיה פוטנציאלית).

שיטת WKB[עריכת קוד מקור | עריכה]

באופן כללי, תאוריית WKB היא שיטה למציאת קירוב לפתרון משוואות דיפרנציאליות אשר נגזרתה הגבוהה ביותר מוכפלת בפרמטר קטן, :

מניחים פתרון בצורת הרחבה לטור אסימפטוטי:

בגבול שבו .

דוגמה[עריכת קוד מקור | עריכה]

מניחים משוואה דיפרנציאלית ליניארית מסדר שני כגון:

כאשר .

מציבים:

ומקבלים:

עבור הסדר המוביל, אפשר לקרב את משוואה  :

בגבול שבו , האיבר הדומיננטי ניתן על ידי:

כך ש- פרופורציונלי ל-.

הצבת 2 גדלים אלו כשווים והשוואת החזקות של ב"סדר 0" מניבה:

המוכרת כמשוואה איקונלית (אנ') עם הפתרון:

השוואת החזקות של בסדר הראשון קובעת:

המוכרת כמשוואת מעבר (אנ') עם הפתרון:

כאשר הוא קבוע שרירותי.

מאחר ש- יכול להיות הן חיובי והן שלילי, קירוב WKB של בסדר ראשון יהיה צירוף ליניארי של זוג פתרונות כדלהלן:

ניתן לקבל פתרונות לסדרים גבוהים יותר על ידי חישוב דומה של:

יישום עבור משוואת שרדינגר[עריכת קוד מקור | עריכה]

משוואת שרדינגר שאינה תלויה בזמן במימד אחד היא:

ניתן לכתוב משוואה זו בצורה אחרת:

פונקציית הגל ניתנת להגדרה על ידי אקספוננט של פונקציה אחרת, (המשויכת לפעולה), אשר יכולה להיות גם פונקציה מרוכבת:

כך ש:

כאשר היא הנגזרת של לפי .

הנגזרת , יכולה להתפצל לחלק ממשי ולחלק מדומה הכוללים את הפונקציות הממשיות ו-:

ואז משרעת פונקציית הגל היא ואילו הפאזה היא: .

משוואת שרדינגר מתחלקת ל-2 משוואות: אחת עבור החלק הממשי ואחת עבור החלק הדמיוני כדלהלן:

לאחר מכן, משתמשים בקירוב הסמי-קלאסי, קירוב WKB. משמעות הדבר היא כי כל פונקציה מפותחת כטור חזקות של קבוע פלאנק המצומצם, . מתוך המשוואות לעיל, ניתן לראות כי טור החזקות חייב להתחיל עם סדר של כדי להתאים לחלק הממשי של המשוואה.

על מנת להשיג גבול קלאסי טוב, יש צורך להתחיל עם חזקה גבוהה של קבוע פלאנק המצומצם, ככל האפשר:

עבור "סדר 0" ניתן להביע את ו- כך:

הנגזרות הראשונות ו- נמחקו מאחר שהן כוללות פקטורים מסדר גודל של הגבוה יחסית לסדר הדומיננטי .

מצד אחד, אם המשרעת משתנה לאט יחסית בהשוואה לפאזה , אזי מקבלים:

המשוואה שלעיל, , תקפה רק כאשר האנרגיה הכללית גדולה יותר מהאנרגיה הפוטנציאלית , כפי שקורה תמיד בתנועה קלאסית.

אחרי ביצוע תהליך דומה לסדר הבא בפיתוח לטור חזקות, מקבלים כפתרון למשוואת שרדינגר את פונקציית הגל:

מצד שני, אם הפאזה משתנה לאט יחסית בהשוואה למשרעת , אזי מקבלים:

המשוואה שלעיל, , תקפה רק כאשר האנרגיה הפוטנציאלית גדולה יותר מהאנרגיה הכללית , כפי שקורה תמיד במנהור קוונטי.

אחרי ביצוע תהליך דומה לסדר הבא בפיתוח לטור חזקות, כמקודם, מקבלים כפתרון למשוואת שרדינגר את פונקציית הגל:

2 הפתרונות המקורבים למשוואת שרדינגר, הן והן , נעשים סינגולריים בנקודת המפנה או נקודת ה"תפר", כאשר ולכן אינם תקפים בנקודה זו.

תקפות הקירובים היא מעל ומתחת גבעת הפוטנציאל. מעל גבעת הפוטנציאל החלקיק מתנהג כגל חופשי - פונקציית הגל אוסצילטורית. מתחת גבעת הפוטנציאל החלקיק עובר שינויים אקספוננטציאלים במשרעת.

על מנת להבטיח את הגלובליות של קירוב WKB עבור משוואת שרדינגר הכוללת גבעת פוטנציאל נדרש למצוא פתרון מקורב בנקודות המפנה שבהן . הדבר נעשה בדרך הבאה:

עבור נקודת המפנה הקלאסית, וקרוב ל- , הביטוי ניתן לפיתוח כטור חזקות:

עבור הסדר הראשון מתקבל:

משוואה דיפרנציאלית זו ידועה כמשוואת איירי וניתן להביע את פתרונה במונחים של פונקציית איירי:

"תפירת" פתרון זה עם 2 הפתרונות המקורבים מעל ומתחת גבעת הפוטנציאל נעשית על ידי מציאת היחס בין המקדמים השונים, ו-. מאחר שפונקציות איירי בגבול האסימפטוטי, הופכות לפונקציות אקספוננטציאליות כגון: סינוס וקוסינוס, ניתן להביע את היחס בין המקדמים השונים דרך "פונקציות הקשר":

לסיכום, מתקבל פתרון מקורב גלובלי עבור משוואת שרדינגר הכוללת גבעת פוטנציאל.

ראו גם[עריכת קוד מקור | עריכה]

לקריאה נוספת[עריכת קוד מקור | עריכה]

  • Bender, Carl; Orszag, Steven (1978). Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill. ISBN 0-07-004452-X
  • Child, M. S. (1991). Semiclassical mechanics with molecular applications. Oxford: Clarendon Press. ISBN 0-19-855654-3.
  • Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 0-13-111892-7.
  • Hall, B.C. (2013). Quantum Theory for Mathematicians. Springer.
  • Liboff, Richard L. (2003). Introductory Quantum Mechanics (4th ed.). Addison-Wesley. ISBN 0-8053-8714-5.
  • Olver, Frank William John (1974). Asymptotics and Special Functions. Academic Press. ISBN 0-12-525850-X.
  • Razavy, Mohsen (2003). Quantum Theory of Tunneling. World Scientific. ISBN 981-238-019-1.
  • Sakurai, J. J. (1993). Modern Quantum Mechanics. Addison-Wesley. ISBN 0-201-53929-2.

הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ R.B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, 1973
  2. ^ Adrian E. Gill, Atmosphere-ocean dynamics, Academic Press, 1982, עמ' 297, ISBN 978-0-12-283522-3