רדיקל של אידיאל

מתוך ויקיפדיה, האנציקלופדיה החופשית

בתורת החוגים, הרדיקל של אידיאל בחוג הוא החיתוך של כל האידיאלים הראשוניים המכילים את . בחוג קומוטטיבי, הרדיקל כולל את כל האיברים שחזקה כלשהי שלהם שייכת ל-, ועל-כן מסמנים את הרדיקל של בסימון . הרדיקל הוא אידיאל בעצמו, ותמיד .

הרדיקל של כל אידיאל הוא אידיאל רדיקלי, כלומר שווה לרדיקל של עצמו. כל אידיאל ראשוני הוא רדיקלי, אבל ההפך אינו נכון ( רדיקלי אבל אינו ראשוני).

הקשר בין אידיאלים רדיקליים של חוג הפולינומים לבין יריעות אלגבריות הוא אחד הרעיונות היסודיים בגאומטריה אלגברית (ראו גם - משפט האפסים של הילברט).

תכונות[עריכת קוד מקור | עריכה]

  • אם אידיאלים בחוג ו-, אז .
  • לכל שני אידיאלים מתקיים .

דוגמאות[עריכת קוד מקור | עריכה]

  • בחוג השלמים, הרדיקל של האידיאל נוצר על ידי הרדיקל של : מכפלת הראשוניים השונים המחלקים את . לדוגמה, . מושג הרדיקל של אידיאל מכליל, לפיכך, את הרדיקל של מספרים שלמים.
  • לכל חוג , הרדיקל של בחוג הפולינומים הוא .