חילוק באפס – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
מ הוספת רווח
אין תקציר עריכה
שורה 3: שורה 3:
'''חלוקה באפס''' היא ה[[פעולה בינארית|פעולה]] ה[[מתמטיקה|מתמטית]] של [[חילוק|חלוקת]] [[מספר]] במספר [[0 (מספר)|0]], ותוצאתה לרוב אינה מוגדרת. את הפעולה ניתן לרשום בצורה <math>\textstyle\frac{a}{0}</math>.
'''חלוקה באפס''' היא ה[[פעולה בינארית|פעולה]] ה[[מתמטיקה|מתמטית]] של [[חילוק|חלוקת]] [[מספר]] במספר [[0 (מספר)|0]], ותוצאתה לרוב אינה מוגדרת. את הפעולה ניתן לרשום בצורה <math>\textstyle\frac{a}{0}</math>.


ברוב תחומי המתמטיקה חילוק מוגדר כ[[כפל]] ב[[מספר הופכי]] (ההופכי למספר a הוא מספר b כך שמכפלתם ab היא 1). מכיוון שלאפס לא קיים הופכי, בהגדרה, לא ניתן לחלק באפס. באופן כללי בכל [[חוג (מבנה אלגברי)|חוג]] אין ל[[איבר האפס]] [[איבר הופכי]] ביחס לכפל, ולכן חילוק באיבר זה אינו מוגדר והוא חסר משמעות.
ברוב תחומי המתמטיקה חילוק מוגדר כ[[כפל]] ב[[מספר הופכי]] (ההופכי למספר a הוא מספר b כך שמכפלתם ab היא 1). מכיוון שלאפס לא קיים הופכי, בהגדרה, לא ניתן לחלק באפס.


ניתן להוכיח את אי-ההפיכות של איבר האפס ישירות מהגדרתו כ[[איבר היחידה]] החיבורי: בזכות ה[[דיסטריבוטיביות]] של כפל מעל חיבור, לכל <math>\ a</math> מתקיים <math> a\cdot0=a\cdot(0+0)=a\cdot0+a\cdot0</math> ולכן לפי [[כלל הצמצום]] החיבורי <math>\ a\cdot0=0</math>. מכאן שלא קיים איבר כך שמכפלתו באיבר האפס תתן את איבר היחידה הכפלי (בחוג לא [[טריוויאלי]] איבר האפס תמיד שונה מאיבר היחידה הכפלי), ולכן אפס אינו הפיך.
ניתן להוכיח את אי-ההפיכות של אפס ישירות מהיותו [[איבר היחידה]] החיבורי: בזכות ה[[דיסטריבוטיביות]] של כפל מעל חיבור, לכל <math>\ a</math> מתקיים <math> a\cdot0=a\cdot(0+0)=a\cdot0+a\cdot0</math> ולכן לפי [[כלל הצמצום]] החיבורי (הנובע מכך שלכל איבר יש הופכי חיבורי) <math>\ a\cdot0=0</math>. מכאן שלא קיים איבר כך שמכפלתו באפס תתן 1.


==הגדרות תקפות לחלוקה באפס==
==הגדרות תקפות לחלוקה באפס==
שורה 14: שורה 14:


לא תמיד חלוקה באפס בפונקציה תתן נקודת אי רציפות סליקה. בנקודות בהן הפונקציה היא מהצורה <math>\textstyle \frac{ a}{ 0}</math> או <math>\textstyle \frac{ \infty}{ 0}</math> (כאשר המונה והמכנה מייצגים את ה[[גבול של פונקציה|גבול]] של הפונקציה במונה והפונקציה במכנה בהתאמה; a שונה מאפס) נקודת אי הרציפות תהיה מ[[נקודת אי רציפות|הסוג השני]] והפונקציה תשאף בנקודות אלו לאינסוף. רק במקרה <math>\textstyle \frac{ 0}{ 0}</math>, אז תיתכן כל תוצאה אפשרית לגבול. במקרה כזה שימושי [[כלל לופיטל]].
לא תמיד חלוקה באפס בפונקציה תתן נקודת אי רציפות סליקה. בנקודות בהן הפונקציה היא מהצורה <math>\textstyle \frac{ a}{ 0}</math> או <math>\textstyle \frac{ \infty}{ 0}</math> (כאשר המונה והמכנה מייצגים את ה[[גבול של פונקציה|גבול]] של הפונקציה במונה והפונקציה במכנה בהתאמה; a שונה מאפס) נקודת אי הרציפות תהיה מ[[נקודת אי רציפות|הסוג השני]] והפונקציה תשאף בנקודות אלו לאינסוף. רק במקרה <math>\textstyle \frac{ 0}{ 0}</math>, אז תיתכן כל תוצאה אפשרית לגבול. במקרה כזה שימושי [[כלל לופיטל]].

===במבנים אלגבריים אחרים===
את הדיון בחלוקה באפס ב[[מערכות מספרים|מערכות המספרים]] המקובלות ניתן [[הכללה (מתמטיקה)|להכליל]] למבנים נוספים. הדיון מוגבל למבנים בהם יש איבר הדומה לאפס, ופעולה הדומה לחילוק. איבר אנלוגי לאפס נקרא [[איבר אפס]], והוא דומה לאפס במובן שהוא איבר היחידה ביחס לפעולה הדומה לחיבור. המבנה הפשוט והנפוץ ביותר שיש בו איבר אפס ופעולה דמויית כפל שניתן להגדיר בעזרתה חילוק (ככפל בהופכי, כאשר קיים הופכי) הוא [[חוג (מבנה אלגברי)|חוג]]. ההוכחה כי לכל a <math>\ a\cdot0=0</math> תקפה בכל חוג. לכן בחוג לא [[טריוויאלי]] (יש בו יותר מאיבר אחד) איבר האפס עצמו לא יכול להיות איבר היחידה הכפלי ולכן לא קיים לאיבר האפס הופכי. במקרה של החוג הטריוויאלי, הכולל את איבר האפס בלבד שמתפקד גם כאיבר היחידה החיבורי, חלוקה באפס כן מוגדרת והיא מקיימת <math>\textstyle \frac{ 0}{ 0} = 0</math>.


==ראו גם==
==ראו גם==

גרסה מ־00:01, 17 במרץ 2011

הערך נמצא בשלבי עבודה: כדי למנוע התנגשויות עריכה ועבודה כפולה, אתם מתבקשים שלא לערוך את הערך בטרם תוסר ההודעה הזו, אלא אם כן תיאמתם זאת עם מניח התבנית.
אם הערך לא נערך במשך שבוע ניתן להסיר את התבנית ולערוך אותו, אך לפני כן רצוי להזכיר את התבנית למשתמש שהניח אותה, באמצעות הודעה בדף שיחתו.
הערך נמצא בשלבי עבודה: כדי למנוע התנגשויות עריכה ועבודה כפולה, אתם מתבקשים שלא לערוך את הערך בטרם תוסר ההודעה הזו, אלא אם כן תיאמתם זאת עם מניח התבנית.
אם הערך לא נערך במשך שבוע ניתן להסיר את התבנית ולערוך אותו, אך לפני כן רצוי להזכיר את התבנית למשתמש שהניח אותה, באמצעות הודעה בדף שיחתו.
גרף הפונקציה . כאשר x שואף לאפס הפונקציה שואפת לאינסוף, והפונקציה אינה מוגדרת באפס.

חלוקה באפס היא הפעולה המתמטית של חלוקת מספר במספר 0, ותוצאתה לרוב אינה מוגדרת. את הפעולה ניתן לרשום בצורה .

ברוב תחומי המתמטיקה חילוק מוגדר ככפל במספר הופכי (ההופכי למספר a הוא מספר b כך שמכפלתם ab היא 1). מכיוון שלאפס לא קיים הופכי, בהגדרה, לא ניתן לחלק באפס.

ניתן להוכיח את אי-ההפיכות של אפס ישירות מהיותו איבר היחידה החיבורי: בזכות הדיסטריבוטיביות של כפל מעל חיבור, לכל מתקיים ולכן לפי כלל הצמצום החיבורי (הנובע מכך שלכל איבר יש הופכי חיבורי) . מכאן שלא קיים איבר כך שמכפלתו באפס תתן 1.

הגדרות תקפות לחלוקה באפס

חלוקה באפס אינה מוגדרת מכיוון שלרוב הגדרת המנה לא תועיל בדבר לחקירה המתמטית ויכולה אף להזיק. אולם בהקשרים מתמטיים מסוימים, נוח להגדיר את תוצאת החלוקה באפס, ואין מניעה לעשות זאת.

גבולות עם חלוקה באפס

מקרה ידוע בחשבון אינפיניטסימלי הוא של פונקציות שאינן מוגדרות בנקודה בגלל חלוקה באפס. לדוגמה הפונקציה . לכל שאינו 1 פונקציה זו היא פשוט הפונקציה הלינארית . אולם בנקודה מתקבלת חלוקה באפס ולכן הפונקציה לא מוגדרת. במקרה הזה נקראת הנקודה נקודת אי רציפות סליקה, שכן ניתן להתעלם מהחלוקה באפס ולהגדיר ומתקבלת פונקציה רציפה. מקרה חשוב שכזה הוא בפונקציה בנקודה . ניתן להוכיח כי נקודה זו היא אי רציפות סליקה וניתן לתקן אותה על ידי ההגדרה . לעובדה זו יש חשיבות מכרעת במציאת הנגזרות של הפונקציות הטריגונומטריות ובקירוב זוויות קטנות.

לא תמיד חלוקה באפס בפונקציה תתן נקודת אי רציפות סליקה. בנקודות בהן הפונקציה היא מהצורה או (כאשר המונה והמכנה מייצגים את הגבול של הפונקציה במונה והפונקציה במכנה בהתאמה; a שונה מאפס) נקודת אי הרציפות תהיה מהסוג השני והפונקציה תשאף בנקודות אלו לאינסוף. רק במקרה , אז תיתכן כל תוצאה אפשרית לגבול. במקרה כזה שימושי כלל לופיטל.

במבנים אלגבריים אחרים

את הדיון בחלוקה באפס במערכות המספרים המקובלות ניתן להכליל למבנים נוספים. הדיון מוגבל למבנים בהם יש איבר הדומה לאפס, ופעולה הדומה לחילוק. איבר אנלוגי לאפס נקרא איבר אפס, והוא דומה לאפס במובן שהוא איבר היחידה ביחס לפעולה הדומה לחיבור. המבנה הפשוט והנפוץ ביותר שיש בו איבר אפס ופעולה דמויית כפל שניתן להגדיר בעזרתה חילוק (ככפל בהופכי, כאשר קיים הופכי) הוא חוג. ההוכחה כי לכל a תקפה בכל חוג. לכן בחוג לא טריוויאלי (יש בו יותר מאיבר אחד) איבר האפס עצמו לא יכול להיות איבר היחידה הכפלי ולכן לא קיים לאיבר האפס הופכי. במקרה של החוג הטריוויאלי, הכולל את איבר האפס בלבד שמתפקד גם כאיבר היחידה החיבורי, חלוקה באפס כן מוגדרת והיא מקיימת .

ראו גם