חלוקה (תורת הקבוצות) – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
מ ←‏דוגמאות: תיקון קישור
מ הוספת שורת קישורים חיצוניים ותחתיה {{תב|ויקישיתוף בשורה}} במידה וחסר (תג) (דיון)
שורה 23: שורה 23:
:<math>g A_\alpha\ = \{ g(a) : a \in A_\alpha \}</math>
:<math>g A_\alpha\ = \{ g(a) : a \in A_\alpha \}</math>
כלומר איברי החבורה לכל היותר מחליפים בין קבוצות החלוקה אך לא לוקחים קבוצה מהחלוקה המקורית לקבוצה שלא נמצאת בחלוקה. חבורות שהחלוקות האינווריאנטיות היחידות שלהן הן החלוקות הטריוויאליות נקראות [[חבורה פרימיטיבית|חבורות פרימיטיביות]].
כלומר איברי החבורה לכל היותר מחליפים בין קבוצות החלוקה אך לא לוקחים קבוצה מהחלוקה המקורית לקבוצה שלא נמצאת בחלוקה. חבורות שהחלוקות האינווריאנטיות היחידות שלהן הן החלוקות הטריוויאליות נקראות [[חבורה פרימיטיבית|חבורות פרימיטיביות]].

==קישורים חיצוניים==
{{ויקישיתוף בשורה}}


[[קטגוריה:תורת הקבוצות]]
[[קטגוריה:תורת הקבוצות]]

גרסה מ־22:47, 23 ביולי 2017

בתורת הקבוצות, חלוקה (לפעמים נקראת חלוקה זרה) של קבוצה X, היא אוסף של תת קבוצות לא ריקות של X, שהן זרות בזוגות ומכסות את X (היינו, X שווה לאיחוד שלהן).

דוגמאות

  • קבוצת המספרים הזוגיים וקבוצת המספרים האי זוגיים היא חלוקה של קבוצת המספרים השלמים.
  • כל יחס שקילות על קבוצה מסוימת מגדיר עליה חלוקה למחלקות שקילות. הכיוון ההפוך גם נכון: כל חלוקה של קבוצה היא למעשה מחלקות שקילות של יחס שקילות שמוגדר כך שהאיבר a שקול ל-b אם שניהם שייכים לאותה תת-קבוצה.
  • אם H היא תת חבורה של G, אז המחלקות הימניות או השמאליות של H הן חלוקה של G. אם H תת חבורה נורמלית, איברי החלוקה מהווים חבורה בפני עצמם באופן טבעי.
  • לכל קבוצה X לא ריקה קיימות חלוקות טריוויאליות: החלוקה שמכילה איבר יחיד והוא הקבוצה כולה, והחלוקה - פירוק הקבוצה ליחידונים.

יחס העידון

על אוסף החלוקות של קבוצה X מוגדר יחס סדר חלקי הנקרא "יחס העידון"; חלוקה אחת מעודנת יותר מהשנייה אם קבוצותיה מוכלות בקבוצות החלוקה השנייה. באופן הזה החלוקה המעודנת יותר היא למעשה איחוד של חלוקות של קבוצות החלוקה הפחות מעודנת. באופן פורמלי, חלוקה מעודנת יותר מחלוקה אם לכל קיימת כך ש- . יחס העידון הופך את אוסף החלוקות של הקבוצה X לסריג שהמינימום והמקסימום שלו הן החלוקות הטריוויאליות.

מספרי בל

מספר החלוקות האפשריות של קבוצה בגודל n, נקרא מספר בל ה-n-י על שם המתמטיקאי האמריקאי אריק טמפל בל, ומסומן (אין קשר ישיר למספרי ברנולי המסומנים באותו אופן, ושכיחים יותר בספרות המתמטית).

מספרי בל מקיימים את הנוסחה הרקורסיבית: , .
הפונקציה היוצרת המעריכית של מספרי בל היא:

(ראו גם פונקציית החלוקה, לפונקציה הסופרת חלוקות שבהן רק גודל החלקים משנה).

חבורה פרימיטיבית

בתורת החבורות, כאשר חבורה פועלת על קבוצה, ניתן לדבר על חלוקות שהן אינווריאנטיות תחת אותה חבורה או אינן. חלוקה נקראת G-אינווריאנטית (כאשר G היא החבורה) אם עבור כל איבר מ-G, מתקיים:

כלומר איברי החבורה לכל היותר מחליפים בין קבוצות החלוקה אך לא לוקחים קבוצה מהחלוקה המקורית לקבוצה שלא נמצאת בחלוקה. חבורות שהחלוקות האינווריאנטיות היחידות שלהן הן החלוקות הטריוויאליות נקראות חבורות פרימיטיביות.

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא חלוקה בוויקישיתוף