כונס אוויר – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
מאין תקציר עריכה
שורה 22: שורה 22:


=== כונסי אוויר על קוליים ===
=== כונסי אוויר על קוליים ===
כאמור מנועי סילון דורשים זרימת במהירות של מאך 0.4 בשביל עבודה אופטימלית, עם זרימה על-קולית סביב למטוס, האוויר צריך להיות מואט בצורה משמעותית לפני שהוא מגיע לשלב המניפה או המדחס. כאשר מבנה הכונס פוגש את זרימת האוויר הוא הולך ליצור גלי הלם הנוצרים משינוי חד בכיוון זרימת האוויר. גלי הלם אלה יגרמו להאטה ולעלייה בלחץ יחסית לאוויר החיצון. כמות גלי ההלם נקבעת על ידי צורת הכונס ועל הכונס להיות מתוכנן לכמות גלי ההלם, בדרך כלל בין 1-4. בכל מקרה גל ההלם הסופי הניצב יצור זרימת אוויר תת-קולית ויקבע את יחס ההמרה <math>{\frac {P_1}{P_0}}</math> כאשר P<sub>0</sub> זה הלחץ החיצון ו- P<sub>1</sub> זה הלחץ אחרי גל ההלם הניצב.
[[קובץ:Concordeintake.gif|ממוזער]]כאמור מנועי סילון דורשים זרימת במהירות של מאך 0.4 בשביל עבודה אופטימלית, עם זרימה על-קולית סביב למטוס, האוויר צריך להיות מואט בצורה משמעותית לפני שהוא מגיע לשלב המניפה או המדחס. כאשר מבנה הכונס פוגש את זרימת האוויר הוא הולך ליצור גלי הלם הנוצרים משינוי חד בכיוון זרימת האוויר. גלי הלם אלה יגרמו להאטה ולעלייה בלחץ יחסית לאוויר החיצון. כמות גלי ההלם נקבעת על ידי צורת הכונס ועל הכונס להיות מתוכנן לכמות גלי ההלם, בדרך כלל בין 1-4. בכל מקרה גל ההלם הסופי הניצב יצור זרימת אוויר תת-קולית ויקבע את יחס ההמרה <math>{\frac {P_1}{P_0}}</math> כאשר P<sub>0</sub> זה הלחץ החיצון ו- P<sub>1</sub> זה הלחץ אחרי גל ההלם הניצב.


עם זאת זה לא קובע את כמות האוויר השימושית למנוע שכן ישנם גורמים נוספים היוצרים אוויר מערבולתי, לא שימושי למנוע ומקטינים את היעילות של הכונס. היעילות נקבעת על ידי יחס יעילות ההמרה <math>\eta_i={\frac {P_2}{P_0}}</math> כאשר P<sub>2</sub> זה הלחץ השימושי בכניסה למנוע עצמו. היחס הזה המכונה Pressure Recovery קובע את יעילות הכונס במהירויות על קוליות.
עם זאת זה לא קובע את כמות האוויר השימושית למנוע שכן ישנם גורמים נוספים היוצרים אוויר מערבולתי, לא שימושי למנוע ומקטינים את היעילות של הכונס. היעילות נקבעת על ידי יחס יעילות ההמרה <math>\eta_i={\frac {P_2}{P_0}}</math> כאשר P<sub>2</sub> זה הלחץ השימושי בכניסה למנוע עצמו. היחס הזה המכונה Pressure Recovery קובע את יעילות הכונס במהירויות על קוליות.
שורה 30: שורה 30:
==== אמצעים לשינוי גאומטריה של הכונס ====
==== אמצעים לשינוי גאומטריה של הכונס ====


*[[קובץ:Concordeintake.gif|ממוזער]]'''רמפה חיצונית''' - אופיינית למשטח מישורי העולה-יורד או המתנפח ועל ידי זה שולט על שטח הפנים המעשי של פתח הכונס. למעשה, רמפה חיצונית שולטת על גל ההלם הראשון הנוצר מהשינוי הראשוני של זרימת האוויר. דוגמה לרמפה עולה-יורדת: [[F-15 איגל]], דוגמה לרמפה מתנפחת: [[מקדונל דאגלס F-4 פנטום]].
*'''רמפה חיצונית''' - אופיינית למשטח מישורי העולה-יורד או המתנפח ועל ידי זה שולט על שטח הפנים המעשי של פתח הכונס. למעשה, רמפה חיצונית שולטת על גל ההלם הראשון הנוצר מהשינוי הראשוני של זרימת האוויר. דוגמה לרמפה עולה-יורדת: [[F-15 איגל]], דוגמה לרמפה מתנפחת: [[מקדונל דאגלס F-4 פנטום]].
* '''רמפה פנימית''' - רמפה פנימית בשונה מרמפה חיצונית משנה את מיקום גלי ההלם השני והלאה, לרוב על הורדת משטח לתוך זרימת האוויר. לעיתים מטוסים בעלי רמפה חיצונית משתמשים גם ברמפה פנימית. דוגמה למטוס המשתמש ברמפה פנימית: [[קונקורד]].
* '''רמפה פנימית''' - רמפה פנימית בשונה מרמפה חיצונית משנה את מיקום גלי ההלם השני והלאה, לרוב על הורדת משטח לתוך זרימת האוויר. לעיתים מטוסים בעלי רמפה חיצונית משתמשים גם ברמפה פנימית. דוגמה למטוס המשתמש ברמפה פנימית: [[קונקורד]].
* '''חרוט כונס''' - לעיתים בצורת חרוט מלא או חצי חרוט החרוט מתקדם או נסוג עם שינוי המהירות, בתלות בעקרון הפעולה שנבחר בעת תכנון הכונס. החרוט משנה את מיקום כלל גלי ההלם בתוך הכונס שכן החרוט נמצא לא רק בכניסה לכונס, אלא חודר למרחק מסויים בתוכו. דוגמה למטוס עם חרוט מתקדם ככל שמאיצים: [[קונבאיר B-58 הסלר|B-58 האסלר]], דוגמה למטוס עם חרוט נסוג ככל שמאיצים: [[לוקהיד SR-71|SR-71]].
* '''חרוט כונס''' - לעיתים בצורת חרוט מלא או חצי חרוט החרוט מתקדם או נסוג עם שינוי המהירות, בתלות בעקרון הפעולה שנבחר בעת תכנון הכונס. החרוט משנה את מיקום כלל גלי ההלם בתוך הכונס שכן החרוט נמצא לא רק בכניסה לכונס, אלא חודר למרחק מסויים בתוכו. דוגמה למטוס עם חרוט מתקדם ככל שמאיצים: [[קונבאיר B-58 הסלר|B-58 האסלר]], דוגמה למטוס עם חרוט נסוג ככל שמאיצים: [[לוקהיד SR-71|SR-71]].

גרסה מ־08:54, 17 במרץ 2019

כונס אוויר של מטוס איירבוס A-380.
דוגמה לחרירי ניקוז של שכבת הגבול בכונס המנוע של מטוס איירבאס A-300.

כונס אוויר הוא מרכיב מבני בכלי טיס האוסף ומנתב זרימת אוויר לרכיבים שונים, בדרך כלל המונח מתייחס לכונס אוויר של מנועי סילון. כונסי האוויר בנויים בצורה שהאוויר הנכנס לתוכם יהיה שימושי לרכיב המשתמש בו. לדוגמה, במנועי טורבו מניפה של מטוסי נוסעים הכונס מאפשר שאיבה מיטבית במהירויות נמוכות וזרימה סדירה ללא מערבולות במהלך שיוט; במטוסים על קוליים הכונס מתוכנן בכדי להאט את האוויר החיצוני ממהירות על קולית למהירות של עד מאך 0.4-0.5.


כונסי מנועי סילון

כונסי אוויר תת קוליים

תרשים של כונס מנוע טורבו פרופ. המנוע עצמו מסודר בצורה הפוכה, עם המדחס בחלק האחורי של המנוע.

תפקיד כונסי אוויר תת קוליים הם לאסוף אוויר חיצוני ולהאט אותו מעט עד לשלב הכניסה למנוע עצמו מאחר מנועי סילון דורשים אוויר במהירות של מאך 0.4 בשביל עבודה מיטבית. שפת ההתקפה הפוגשת את האוויר נוטה להיות עבה יחסית וכוללת אמצעים נוגדי התקרחות.

מרבית הכונסים כוללים כמו כן אמצעים לניקוז זרימת הגבול הנוטה להיות מערבולתית, לא שימושית למנוע. לרוב גם כונסי המנוע מורחקים מגוף המטוס בשביל ששכבת הגבול הצמודה לגוף המטוס לא תישאב למנוע.

למרות שזה לא מחייב, כונסים תת-קוליים נוטים להיות מעוגלים.

כונסי מנועי טורבו-פרופ וטורבו-ציר

מנועי טורבו-פרופ וטורבו-ציר בגלל אופן הפעולה השונה ולעיתים הסידור השונה כלומר הכונס לא חייב להיות מקדימה יחסית לכיוון הטיסה, כונס האוויר של מנועים אלו נוטה להיות שונה מאוד ממנועי טורבו-סילון או טורבו-מניפה. לרוב כונסים של מנועים אלה קטנים משמעותית יחסית למנועי טורבו-מניפה או טורבו סילון. הצורה האופיינית של תעלת הכונס של מנועי טורבו-פרופ היא התקנה מתחת למנוע מאחורי המדחף ומתעקלת כלפי מעלה לטובת שלב המדחף הנמצא בחלק האחורי של המנוע.

בגלל אופן התקנה זה, מתאפשרת התקנה של המפריד האינרציאלי. המפריד האינרציאלי הוא מעין דלת מעקף הנמצאת בדיוק באזור העיקול, המובילה החוצה מהמנוע. כל חלקיק קרח או כל גוף זר הנשאב לכונס יעוף מהדלת הזאת עקב האינרציה של הגוף. כאשר המפריד האינרציאלי פתוח הוא מקטין את יעילות המנוע שכן כמות אוויר משמעותית מנוקזת ולא מגיעה למנוע, אבל היא גם מגנה על המנוע מגופים זרים במהלך המראה ונחיתה או בטיסה בתנאי התקרחות.

חלק ממנועי טורבו-ציר גם משתמשים בתעלת כונס מעוקל ובמפריד אינרציאלי.

כונסי אוויר על קוליים

כאמור מנועי סילון דורשים זרימת במהירות של מאך 0.4 בשביל עבודה אופטימלית, עם זרימה על-קולית סביב למטוס, האוויר צריך להיות מואט בצורה משמעותית לפני שהוא מגיע לשלב המניפה או המדחס. כאשר מבנה הכונס פוגש את זרימת האוויר הוא הולך ליצור גלי הלם הנוצרים משינוי חד בכיוון זרימת האוויר. גלי הלם אלה יגרמו להאטה ולעלייה בלחץ יחסית לאוויר החיצון. כמות גלי ההלם נקבעת על ידי צורת הכונס ועל הכונס להיות מתוכנן לכמות גלי ההלם, בדרך כלל בין 1-4. בכל מקרה גל ההלם הסופי הניצב יצור זרימת אוויר תת-קולית ויקבע את יחס ההמרה כאשר P0 זה הלחץ החיצון ו- P1 זה הלחץ אחרי גל ההלם הניצב.

עם זאת זה לא קובע את כמות האוויר השימושית למנוע שכן ישנם גורמים נוספים היוצרים אוויר מערבולתי, לא שימושי למנוע ומקטינים את היעילות של הכונס. היעילות נקבעת על ידי יחס יעילות ההמרה כאשר P2 זה הלחץ השימושי בכניסה למנוע עצמו. היחס הזה המכונה Pressure Recovery קובע את יעילות הכונס במהירויות על קוליות.

התרשים הבא מציג את יעילות ההמרה של ארבעת סוגי הכונסים יחסית למספר המאך של האוויר החיצוני:

תרשים המציג את יעילות החלפת הלחץ של סוגים שונים של כונסים לפי כמות גלי ההלם שהם מתוכננים לייצר

כפי שניתן לראות ככל שמתכננים כונסים לכמות גלי הלם גדולה יותר, יעילות ההמרה של הלחץ תהיה גבוהה יותר. כמו כן ניתן לראות שבכל מצב פרט לכונס המתוכנן לכל הלם בודד גל ההלם הראשוני חייב לפגוע בדיוק בשפה החיצונית של הכונס שכן זה מוריד את יעילות הכונס. חשוב לציין שכמות גלי ההלם ומיקומם צפוייה להשתנות עם עליית המהירות, לדוגמה במהירות של מאך 1 בכל סוגי הכונסים יהיה גל הלם בודד. בגלל השינוי הזה יעילות ההמרה תשתנה עם שינוי המהירות ולכן רוב המטוסים הצפויים לטוס במהירות על-קולית כוללים כונסים עם אמצעים שונים לשינוי הגיאומטריה הפנימית של הכונס ועל ידי זה לשלוט בצורה יעילה על גל ההלם הניצב.

אמצעים לשינוי גאומטריה של הכונס

  • רמפה חיצונית - אופיינית למשטח מישורי העולה-יורד או המתנפח ועל ידי זה שולט על שטח הפנים המעשי של פתח הכונס. למעשה, רמפה חיצונית שולטת על גל ההלם הראשון הנוצר מהשינוי הראשוני של זרימת האוויר. דוגמה לרמפה עולה-יורדת: F-15 איגל, דוגמה לרמפה מתנפחת: מקדונל דאגלס F-4 פנטום.
  • רמפה פנימית - רמפה פנימית בשונה מרמפה חיצונית משנה את מיקום גלי ההלם השני והלאה, לרוב על הורדת משטח לתוך זרימת האוויר. לעיתים מטוסים בעלי רמפה חיצונית משתמשים גם ברמפה פנימית. דוגמה למטוס המשתמש ברמפה פנימית: קונקורד.
  • חרוט כונס - לעיתים בצורת חרוט מלא או חצי חרוט החרוט מתקדם או נסוג עם שינוי המהירות, בתלות בעקרון הפעולה שנבחר בעת תכנון הכונס. החרוט משנה את מיקום כלל גלי ההלם בתוך הכונס שכן החרוט נמצא לא רק בכניסה לכונס, אלא חודר למרחק מסויים בתוכו. דוגמה למטוס עם חרוט מתקדם ככל שמאיצים: B-58 האסלר, דוגמה למטוס עם חרוט נסוג ככל שמאיצים: SR-71.


סוגי כונסים ללא גאומטריה משתנה


Start/Unstart

רכיבים

כונסי אוויר לרכיבים שונים

ראו גם

קישורים חיצוניים

המשך קריאה

הערות שוליים

קובץ:Pitotintake.svg