פונקציה חד-חד-ערכית ועל – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
אין תקציר עריכה
אין תקציר עריכה
שורה 1: שורה 1:
{{סימון מתמטי}}
{{סימון מתמטי}}
[[קובץ:Bijection.svg|שמאל|ממוזער|200px|דוגמה לפונקציה חד-חד-ערכית ועל]]
ב[[מתמטיקה]], '''פונקציה חד-חד-ערכית ועל''' היא [[פונקציה]] שמתקיימות בה שתי תכונות:
ב[[מתמטיקה]], '''פונקציה חד-חד-ערכית ועל''' היא [[פונקציה]] שמתקיימות בה שתי תכונות:
* היא [[פונקציה חד-חד-ערכית]].
* היא [[פונקציה חד-חד-ערכית]].
שורה 7: שורה 6:
==ניסוח פורמלי==
==ניסוח פורמלי==
פונקציה <math>f:X\rarr Y</math>, מהקבוצה <math>X</math> לקבוצה <math>Y</math>, היא חד-חד-ערכית ועל, אם לכל <math>b\in Y</math> קיים <math>a\in X</math> יחיד כך ש-<math>f(a) = b</math>.
פונקציה <math>f:X\rarr Y</math>, מהקבוצה <math>X</math> לקבוצה <math>Y</math>, היא חד-חד-ערכית ועל, אם לכל <math>b\in Y</math> קיים <math>a\in X</math> יחיד כך ש-<math>f(a) = b</math>.
{{-}}

==דוגמה==
==דוגמאות==
[[קובץ:Bijection.svg|שמאל|ממוזער|200px|דוגמה לפונקציה חד-חד-ערכית ועל]]
הפונקציה <math>y=x^3</math> היא חד-חד-ערכית ועל בתחום <math>f:[-1, 1] \rightarrow [-1, 1]</math>, משום שכל ערך של y בטווח <math>[-1,1]</math> מופיע בדיוק פעם אחת.
הפונקציה <math>y=x^3</math> היא חד-חד-ערכית ועל בתחום <math>f:[-1, 1] \rightarrow [-1, 1]</math>, משום שכל ערך של y בטווח <math>[-1,1]</math> מופיע בדיוק פעם אחת.
{{-}}

==תכונות ושימושים==
==תכונות ושימושים==
אם קיימת פונקציה כזו, הקבוצות <math>X</math> ו-<math>Y</math> נקראות "[[קבוצות שקולות|שקולות]]" והן בעלות אותה [[עוצמה (מתמטיקה)|עוצמה]]. פונקציה היא חד-חד-ערכית ועל [[אם ורק אם]] היא [[פונקציה הפיכה|הפיכה]], ולכן יחס השקילות הזה בין קבוצות הוא [[יחס סימטרי]].
אם קיימת פונקציה כזו, הקבוצות <math>X</math> ו-<math>Y</math> נקראות "[[קבוצות שקולות|שקולות]]" והן בעלות אותה [[עוצמה (מתמטיקה)|עוצמה]]. פונקציה היא חד-חד-ערכית ועל [[אם ורק אם]] היא [[פונקציה הפיכה|הפיכה]], ולכן יחס השקילות הזה בין קבוצות הוא [[יחס סימטרי]].

גרסה מ־02:11, 21 בספטמבר 2020

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה, פונקציה חד-חד-ערכית ועל היא פונקציה שמתקיימות בה שתי תכונות:

ניסוח פורמלי

פונקציה , מהקבוצה לקבוצה , היא חד-חד-ערכית ועל, אם לכל קיים יחיד כך ש-.

דוגמאות

דוגמה לפונקציה חד-חד-ערכית ועל

הפונקציה היא חד-חד-ערכית ועל בתחום , משום שכל ערך של y בטווח מופיע בדיוק פעם אחת.

תכונות ושימושים

אם קיימת פונקציה כזו, הקבוצות ו- נקראות "שקולות" והן בעלות אותה עוצמה. פונקציה היא חד-חד-ערכית ועל אם ורק אם היא הפיכה, ולכן יחס השקילות הזה בין קבוצות הוא יחס סימטרי.

אם על הקבוצות מוגדר מבנה נוסף (פעולות אלגבריות, טופולוגיה, מטריקה וכדומה), אז פונקציה חד-חד-ערכית ועל ביניהן השומרת על המבנה נקראת איזומורפיזם.

פונקציה חד-חד-ערכית ועל מקבוצה אל עצמה נקראת תמורה. אוסף התמורות על קבוצה הוא חבורת הסימטריות של הקבוצה. לדוגמה, הפונקציה המתאימה לכל מספר שלם את העוקב שלו, היא תמורה על המספרים השלמים. פונקציות חד-חד-ערכיות ועל הן מאבני הבניין של צופנים סימטריים מודרניים רבים בקריפטוגרפיה.

ראו גם

קישורים חיצוניים

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.