תת-חבורת הקומוטטורים – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
גיל14 (שיחה | תרומות)
גיל14 (שיחה | תרומות)
שורה 12: שורה 12:


לדוגמה,
לדוגמה,
תת-חבורת הקומוטטורים של [[החבורה הסימטרית|חבורת התמורות]] <math>\ S_n</math> היא [[חבורת התמורות הזוגיות]] המתאימה, <math>\ A_n</math>, בעוד ש- <math>\ A_n</math> (מפני שהיא פשוטה ולא אבלית,) מושלמת לכל <math>\ 5\leq n</math>.
תת-חבורת הקומוטטורים של [[החבורה הסימטרית|חבורת התמורות]] <math>\ S_n</math> היא [[חבורת התמורות הזוגיות]] המתאימה, <math>\ A_n</math>, בעוד ש- <math>\ A_n</math> מושלמת לכל <math>\ 5\leq n</math> (מפני שהיא פשוטה ולא אבלית).


==תכונות==
==תכונות==

גרסה מ־13:48, 30 באפריל 2007

במתמטיקה ובמיוחד באלגברה מופשטת, תת חבורת הקומוטטורים של חבורה היא התת-חבורה הנוצרת על-ידי כל הקומוטטורים של אברים בחבורה. תת-חבורת הקומוטטורים מודדת עד כמה החבורה היא אבלית: היא טריוויאלית אם ורק אם החבורה אבלית, ובאופן כללי יותר, המנה היא המנה האבלית הגדולה ביותר של G.

הגדרה

הקומוטטור של שני אברים g,h בחבורה G הוא, לפי ההגדרה, האיבר . תת-חבורת הקומוטטורים של היא החבורה הנוצרת על-ידי כל האברים האלה, כלומר, .

את החבורה המתקבלת מסמנים , או . הסימון האחרון מאפשר הכללה: אם תת-חבורות נורמליות של G, אז היא תת-החבורה הנוצרת על-ידי כל הקומוטטורים עבור ; גם זו תת-חבורה נורמלית, המוכלת ב- A וב- B.
כעת אפשר להגדיר תת-חבורות חשובות של G, באינדוקציה: , ולכל n, . אם סדרה זו מגיעה בסופו של דבר לחבורה הטריוויאלית, אז G היא פתירה. חבורה המקיימת את השוויון נקראת חבורה מושלמת.

לדוגמה, תת-חבורת הקומוטטורים של חבורת התמורות היא חבורת התמורות הזוגיות המתאימה, , בעוד ש- מושלמת לכל (מפני שהיא פשוטה ולא אבלית).

תכונות

תת-חבורת הקומוטטורים היא התת-חבורה הנורמלית הקטנה ביותר כך שחבורת המנה היא אבלית: לכל תת-חבורה נורמלית N של G, המנה אבלית אם ורק אם .

מכיוון שהומומורפיזם מעביר קומוטטור לקומוטטור, מתקיימת ההכלה . עבור חבורות מנה, ניתן לחשב ש- ובפרט .

ידוע שכל איבר בתת-חבורת הקומוטטורים הוא "קומוטטור ארוך", מן הצורה , [1] אם כי בדרך כלל, אוסף הקומוטטורים עצמו אינו מהווה חבורה.

תת-חבורות של קומוטטורים מקיימות את למת שלוש תת-החבורות: לכל שלוש תת-חבורות נורמליות A,B,C של G, .

ראו גם

  1. ^ תרגיל 2.42 ב- An Introduction to the Theory of Groups, J.J. Rotman