מכפלה קרטזית – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
AlleborgoBot (שיחה | תרומות)
מ בוט מוסיף: sv:Cartesisk produkt
Nallimbot (שיחה | תרומות)
מ בוט מוסיף: vi:Tích Descartes
שורה 74: שורה 74:
[[ta:கார்டீசியன் பெருக்கற்பலன்]]
[[ta:கார்டீசியன் பெருக்கற்பலன்]]
[[uk:Декартів добуток множин]]
[[uk:Декартів добуток множин]]
[[vi:Tích Descartes]]
[[zh:笛卡儿积]]
[[zh:笛卡儿积]]
[[zh-classical:直積]]
[[zh-classical:直積]]

גרסה מ־03:07, 24 בדצמבר 2008

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

בתורת הקבוצות ובמתמטיקה בכלל, מכפלה קרטזית היא פעולה על קבוצות שיוצרת מהן קבוצות חדשות שבהן יש חשיבות לסדר האיברים. המכפלה נקראת קרטזית לכבוד רנה דקארט (ששמו הלטיני הוא רנאטוס קרטזיוס) שהגדיר את המישור האוקלידי כקבוצת כל הזוגות הסדורים של מספרים ממשיים- ובכך יצר את תחום הגאומטריה האנליטית.

במקרה הפרטי שבו יש שתי קבוצות, A ו-B, המכפלה הקרטזית שלהן מסומנת A×B והיא קבוצת כל הזוגות הסדורים האפשריים, כשבכל זוג האיבר הראשון שייך ל-A והאיבר השני שייך ל-B.

לדוגמה: אם קבוצה X מכילה 13 איברים של ערכי קלפים { A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2 } וקבוצה Y מכילה 4 איברים של סוג הקלף {♠, ♥, ♦, ♣}, אזי המכפלה הקרטזית של שתי הקבוצות היא קבוצת קלפי המשחק המוכרת לנו, בעלת 52 האיברים { (♣ ,A, ♠), (K, ♠), ..., (2, ♠), (A, ♥), ..., (3, ♣), (2) }.

באותה הדרך, אם נסתכל על n קבוצות, המכפלה הקרטזית שלהן תיתן קבוצה של n-יות המוגדרת כך:

בצורה פורמלית, נוכל להגדיר מכפלה קרטזית של כל משפחה (גם אינסופית) של קבוצות באמצעות קבוצת פונקציות שמוגדרת כך:

. כאן היא קבוצה של אינדקסים (דהיינו - לכל איבר בקבוצת האינדקסים מתאימה קבוצה אחת מתוך הקבוצות המוכפלות). האיברים של המכפלה הן פונקציות, כך שכל פונקציה מייצגת "נקודה" במכפלה. הקואורדינטות של הנקודה הן בדיוק הערכים שמחזירה הפונקציה. הדרישה על הפונקציות הללו היא שלכל קוארדינטה, הפונקציה תחזיר ערכים השייכים רק לקבוצה שאותה מייצגת הקוארדינטה.

אקסיומת הבחירה היא הקביעה שאם היא קבוצה של אינדקסים ולכל הקבוצה לא ריקה, אז המכפלה הקרטזית לא ריקה.


דוגמאות

  • המרחב הוא מכפלה קרטזית של פעמים הישר הממשי . בכתיב פורמלי: (זו גם הסיבה שבגללה כותבים את בחזקת ).
כל וקטור במרחב זה הוא n-יה סדורה . על פי ההגדרה הפורמלית שניתנה לעיל, כל וקטור הוא פונקציה כאשר . עבור נקודה כלשהי במרחב, הפונקציה המתאימה לה היא זו המקיימת .
  • נביט בקבוצות כאשר . המכפלה היא קבוצת הפונקציות המקיימות .

ראו גם