דרגות חופש

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

בתחומים מדעיים רבים, ובפרט בפיזיקה ובכימיה, דרגות החופש של מערכת נתונה הן קבוצה של פרמטרים עצמאיים המתארים, עבור מודל מתמטי מסויים, את כלל המצבים בהם יכולה להימצא המערכת. כלומר, מצב המערכת תלוי (לפי המודל) אך ורק בערכם של פרמטרים הללו, וניתן לשנות כל אחד מהם, כך שהאחרים יישארו קבועים. בניסוח יותר פורמלי, מספר דרגות החופש של מערכת הוא מספר הערכים הבלתי-תלויים (המינימלי) המאפשר לתאר את מצבה באופן חד חד ערכי.

מקורו של המושג בסטטיסטיקה,[דרוש מקור] שם הוא משמש באופן טכני יותר לתיאור מספר הפרמטרים המעורבים בקביעת התפלגות, או מספר המשתנים החופשיים בחישוב. בהשאלה, המונח "מספר דרגות החופש" משמש בכל תחומי המדע, במשמעות דומה לזו של ממד מתמטי או ממד פיזיקלי.

דוגמאות[עריכת קוד מקור | עריכה]

במכניקה קלאסית, כדי לתאר באופן שלם את תנועתו של חלקיק, יש צורך בשלושה רכיבי מקום (בקואורדינטות קרטזיות), ובשלושה רכיבי מהירות. אם כל אלה בלתי תלויים זה בזה, אומרים שלחלקיק יש 6 דרגות חופש. משמעות הדבר היא שבהינתן ששת המספרים הללו ברגע נתון, ניתן לקבוע את ערכם בכל רגע אחר. לכן, למכל גז שיש בו N חלקיקים, יש 6N דרגות חופש - 6 לכל חלקיק. העובדה שהחלקיקים חסומים בתחום מרחבי מסוים אינה פוגעת במספר דרגות החופש. לעומת זאת, חלקיק שתנועתו מוגבלת על ידי משוואות, מפסיד דרגות חופש. לכן, בפועל ניתן לתאר (בקירוב) מערכות הבנויות ממספר רב של חלקיקים בעזרת מספר מצומצם של דרגות חופש. למשל, לכלי רכב יבשתי יש 4 דרגות חופש (שתיים לתיאור המקום, ושתיים לתיאור המהירות), ואילו לעץ תפוחים הנטוע במקום אחד יש רק שתי דרגות חופש (. לדיסקית במשחק הוקי קרח יש 5 דרגות חופש: 4 לתיאור המקום והתנועה על המשטח הדו-ממדי, ועוד אחת לתיאור תנועת הסיבוב של הדיסקית סביב עצמה.

בתורת היחסות הכללית, משפט העדר השיער קובע כי צופה לחור שחור יציב יש שלוש דרגות חופש: מסה, תנע זוויתי, ומטען חשמלי.

במקרים רבים, מספר דרגות החופש תלוי בחלק של המערכת שאותו מבקשים לתאר. לדוגמה, כדי להבין תאונת דרכים, ייתכן שיש צורך במשתנים רבים, בנוסף למקום ולמהירות: לחץ האוויר בכל גלגל, המסה הכוללת, הטמפרטורה, ועוד. אם מבקשים לדייק, מספר דרגות החופש מתאר את המודל המתמטי של המערכת הפיזיקלית (ובפרט, את החלק שאותו מעוניינים למדל, ולא את המערכת הפיזיקלית כולה.

דרגות חופש בסטטיסטיקה[עריכת קוד מקור | עריכה]

המושג "דרגות חופש" הופיע לראשונה במאמר של פישר מ-1922 על מבחן כי בריבוע של טבלאות תלות. למשתנה מקרי המוגדר כסכום \ X=Z_1^2+\dots+Z_n^2, כאשר \ Z_1,\dots,Z_n משתנים מקריים נורמליים סטנדרטיים ובלתי תלויים, יש התפלגות הקרויה "התפלגות כי-בריבוע עם n דרגות חופש". אם המשתנים קשורים על ידי המשוואה \ Z_1+\dots+Z_n = 0 (כפי שקורה למשל אם מחסירים מכל אחד מהם את הממוצע), אז X מתפלג כי-בריבוע עם n-1 דרגות חופש.

להתפלגויות כי בריבוע יש תפקיד מרכזי במבחנים סטטיסטיים עם מודלים לינאריים, כגון ניתוח שונות.

לקריאה נוספת[עריכת קוד מקור | עריכה]