אפיטרוכואיד

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

אפיטרוקואיד היא צורה גאומטרית הנוצרת על ידי נקודה על גבי מעגל הסובב (ללא החלקה) סביב מעגל אחר. בשעה שהפרמטרים הנכללים במשוואה הם R המהווה את רדיוס המעגל החוסם; r, המהווה את רדיוס המעגל התוחם ו- d המהווה את המרחק מנקודה o במרכז התחום אל "הנקודה הצובעת".

אפיטרוכואיד בעל R=3 r=1 d=1/2

,

הפונקציה המתארת צורה זו היא:

מקרים פרטיים של האפיטרוקואיד הם האפיציקלואיד בו מתקיים היוצרים יחס .

ולכן גם המשוואות הפרמטריות:

לימצון, בשעה שמתקיימת המשוואה

וועקומת לימצון של פסקל (Limaçon de Pascal) בה מתקיים

ולכן גם המשוואות הפרמטריות:

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא אפיטרוכואיד בוויקישיתוף
P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.