טופולוגיית סדר

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

בטופולוגיה, לכל קבוצה סדורה ביחס סדר מלא קיימת טופולוגיה טבעית המכונה טופולוגיית הסדר, והיא זו הנוצרת על ידי התת-בסיס של הקבוצות מהצורה:

עבור כל .

באופן שקול, זו גם הטופולוגיה הנוצרת על ידי הבסיס שמורכב מקבוצות מהצורה:

עבור כל .

דוגמאות[עריכת קוד מקור | עריכה]

  • הטופולוגיה הרגילה על הישר הממשי היא טופולוגיית הסדר ביחס לסדר הסטנדרטי שלו.
  • עבור הסודר (הסודר האינסופי השני), טופולוגיית הסדר המוגדרת עליו הופכת אותו למרחב קומפקטי.
P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.