לדלג לתוכן

הבדלים בין גרסאות בדף "הבעיה השלישית של הילברט"

←‏פתרונה: האיות הנכון של השם
מ (בוט החלפות: \1תיאור\2)
(←‏פתרונה: האיות הנכון של השם)
תגיות: עריכה ממכשיר נייד עריכה דרך האתר הנייד
הבעיה השלישית של הילברט נפתרה כמעט מיד על ידי [[מקס דן|מקס דֶ‏ן]] (Max Dehn), יהודי, שנולד ב[[המבורג]] בשנת [[1878]]. דן סיים את עבודת הדוקטורט שלו ב[[אוניברסיטת גטינגן]] ב- 1900, וכך נחשף לנושאים שהעסיקו את הילברט מיד ראשונה.
 
הפתרון של דהןדן מבוסס על אבחנה פשוטה ורבת עוצמה, ששימשה אותו גם בעבודתו בתחומים מתמטיים אחרים: הצמדת [[שמורה (מתמטיקה)|שמורה]] (אינווריאנט) לכל פאון, שלא תושפע מן הפירוק למרכיבים. לכל צלע בפאון יש שני מאפיינים מספריים: אורך הצלע, והזווית בין שתי הפאות הנפגשות באותה צלע. נניח שאפשר למצוא פונקציה f של שני ערכים אלה, שתקיים את השוויונות <math>\ f(x,\alpha)+f(y,\alpha)=f(x+y,\alpha)</math> ו- <math>\ f(x,\alpha)+f(x,\pi-\alpha)=0</math>. אם נגדיר את ה'משקל' של פאון להיות הסכום של ערכי f במעבר על כל צלעות הפאון, התכונות של f יבטיחו שבכל פירוק של הפאון למספר מרכיבים, סכום המשקלים של המרכיבים יהיה שווה למשקלו של הפאון המקורי. מכאן נובע מיד ששני פאונים בעלי משקל שונה לא ניתן לפרק למרכיבים חופפים בזוגות.
 
דהןדן מצא פונקציה כזו. לשני הארבעונים שבסיסם משולש ישר-זווית ושווה שוקים ABC בעל שוק AB=BC באורך 1, וגובהם 1, שבאחד מהם הקודקוד שמעל לבסיס מונח מעל ל- A ובשני מעל ל- B, יש משקלים שונים, ולכן לא ניתן לפרק אותם למרכיבים חופפים בזוגות - בדיוק כפי שביקש הילברט.
 
[[קטגוריה:הבעיות של הילברט]]
משתמש אלמוני