לדלג לתוכן

הבדלים בין גרסאות בדף "עקביות (לוגיקה)"

נוספו 15 בתים ,  לפני 14 שנים
אין תקציר עריכה
(בוט - מחליף 'מסויימ' ב'מסוימ')
{{פירוש נוסף|נוכחי=עקביות בלוגיקה|אחר=עקביות בתחומים אחרים|ראו=[[עקביות]]}}
 
'''עקביות''' (או- '''קונסיסטנטיות''', '''קוהרנטיות''') הוא מושג ב[[לוגיקה]] וב[[מתמטיקה]] המציין שמערכת מסוימת היא נטולת [[סתירה|סתירות]]. ב[[לוגיקה מתמטית]], [[תורה (לוגיקה מתמטית)|תורה]] '''עקבית''' היא כזו שלא ניתן להוכיח במסגרתה [[טענה (לוגיקה מתמטית)|טענה]] והיפוכה. בתורות לא עקביות אפשר להוכיח כל טענה (משום שמהנחות שקריות נובעת כל מסקנה שהיא), ולכן נחשבת עקביות למעלה הכרחית בכל תורה המכבדת את עצמה.
 
בכדי להוכיח שמערכת היא עקבית מספיק למצוא [[מודל (לוגיקה מתמטית)|מודל]] שמקיים את כל האקסיומות של המערכת. מודל עבור תורה A הנבנה במסגרת של תורה B מוכיח '''עקביות יחסית''' - אם B עקבית, אז גם A כזו. מודלים כאלו ידועים עבור גאומטריות שונות (למשל, שתי הגרסאות ה[[גאומטריה לא אוקלידית|לא אוקלידיות]] של גאומטרית המישור הן עקביות ביחס לגאומטרית המישור האוקלידית), וגם עבור מערכות אקסיומטיות שונות ל[[תורת הקבוצות האקסיומטית|תורת הקבוצות]].
10,476

עריכות