נקודת שבת

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, נקודת שבת של פונקציה היא נקודה בתחום ההגדרה של הפונקציה אשר תמונתה היא הנקודה עצמה, כלומר אם היא פונקציה אז הנקודה היא נקודת שבת אם מתקיים .

דוגמאות[עריכת קוד מקור | עריכה]

פונקציה בעלת שלוש נקודות שבת (שהן נקודות החיתוך של הפונקציה עם הישר y=x)
  • עבור הפונקציה , הערך , הוא נקודת שבת (היחידה), הואיל ו- (וזהו הפתרון היחיד למשוואה ).
  • נקודה שאינה משנה את מיקומה כתוצאה מטרנספורמציה מרחבית. לדוגמה: בסיבוב של כדור סביב צירו, הנקודות הנמצאות על הציר נותרות במקומן, והן נקודות שבת.
  • נקודות שבת "מעניינות" של פונקציה הן כאלו שאם מפעילים את הפונקציה על ערך מסוים, אחר מפעילים אותה שוב על הערך שהתקבל וכן הלאה, הולכים ומתקרבים לנקודת השבת. בניסוח פורמלי: אם עבור בחירה של הקרוב מספיק לנקודת השבת , מתקיים (כאן וכדומה). נקודת שבת כזו נקראת נקודת שבת יציבה.

משפטים הקשורים בנקודות שבת[עריכת קוד מקור | עריכה]

  • פונקציה רציפה. אזי יש לה נקודת שבת בקטע .
  • משפט ההעתקה המכווצת על הישר הממשי: . אם קיים קבוע כך ש-, לכל , אזי יש ל- נקודת שבת אחת ויחידה.
  • הרחבה של המשפט הקודם למרחב מטרי שלם כלשהו: משפט נקודת השבת של בנך נותן תנאי מספיק כדי שלפונקציה תהיה נקודת שבת אחת ויחידה, ומאפשר למצוא אותה על ידי הפעלה חוזרת של הפונקציה כמתואר לעיל.
  • הרחבה של המשפט הקודם לקבוצה קומפקטית וקמורה ב- הוא משפט נקודת השבת של בראואר, המוכיח קיום של נקודת שבת במצבים מסוימים, אך לא מראה דרך מעשית למצוא אותה.

קישורים חיצוניים[עריכת קוד מקור | עריכה]

P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.