לדלג לתוכן

גידול של חבורה

מתוך ויקיפדיה, האנציקלופדיה החופשית

גידול של חבורה הוא האופן שבו חבורה, בדרך כלל אינסופית, מכוסה על ידי מילים הולכות ומתארכות בקבוצת יוצרים נתונה.

פונקציית הגידול והקצב

[עריכת קוד מקור | עריכה]

תהי G חבורה הנוצרת על ידי קבוצת יוצרים סופית, X. בדרך כלל מניחים שהקבוצה סימטרית להיפוך. מסמנים ב- את קבוצת האיברים שאפשר להציג כמכפלה של לכל היותר איברים של X. פונקציית הגידול המתאימה ל-X היא הפונקציה . כאשר G אינסופית, זוהי פונקציה עולה ממש. מגדירים יחס שקילות על הפונקציות העולות, לפיו אם יש קבוע c כך ש-, וגם להפך. כל פונקציות הגידול של אותה חבורה שקולות זו לזו.

לחבורה נוצרת סופית יש פונקציית גידול פולינומי אם ורק אם היא נילפוטנטית-למעשה (virtually nilpotent). מכאן נובע שבמקרה כזה המעלה של פונקציית הגידול היא מספר שלם. המספר הוא קצב הגידול המעריכי (ביחס ל-X). הקצב הוא 1 כאשר פונקציית הגידול היא תת-מעריכית. יש חבורות שקצב הגידול שלהן ביחס לכל קבוצת יוצרים X גדול מ-1, אבל האינפימום שווה ל-1. אם האינפימום של הקצבים האלה גדול מ-1, החבורה היא בעלת גידול מעריכי. לדוגמה, לחבורה חופשית (לא אבלית) יש גידול מעריכי. בחבורה לא אמנבילית קצב הגידול ביחס לכל קבוצת יוצרים סופית גדול מ-1.

טור הילברט

[עריכת קוד מקור | עריכה]

תהי f פונקציית הגידול של החבורה ביחס לקבוצת יוצרים סופית X. טור הילברט של החבורה (ביחס ל-X) הוא טור החזקות . הטור מעניין במיוחד כאשר הוא מייצג פונקציה רציונלית במשתנה x. חבורה נקראת 'פאן-רציונלית' אם טור הילברט שלה רציונלי ביחס לכל קבוצת יוצרים. החבורות הבאות ידועות כפאן-רציונליות:

לחבורת באומסלג-סוליטר יש גידול רציונלי ביחס לקבוצת היוצרים הסטנדרטית. עם זאת, לחבורת הייזנברג מסדר 5 טור הילברט טרנסצנדנטי ביחס לקבוצת היוצרים הסטנדרטית[3].

בכל חבורה עם גידול רציונלי, בעיית המילה פתירה. מאידך, יש חבורות פתירות (עם ) שבהן בעיית המילה אינה פתירה (Kharlampovich 1981), וממילא עם פונקציית גידול שאינה רציונלית.

טור הילברט מוגדר גם עבור חבורה למחצה; עבור חבורה למחצה עם יחס אחד, הוא רציונלי (Backelin).

הערות שוליים

[עריכת קוד מקור | עריכה]
  1. ^ M. Benson, Growth series of finite extensions of ℤnare rational, Inventiones mathematicae 73, 1983-06-01, עמ' 251–269 doi: 10.1007/BF01394026
  2. ^ Moon Duchin, Michael Shapiro, The Heisenberg group is pan-rational, Advances in Mathematics 346, 2019-04-13, עמ' 219–263 doi: 10.1016/j.aim.2019.01.046
  3. ^ Michael Stoll, Rational and transcendental growth series for the higher Heisenberg groups, Inventiones mathematicae 126, 1996-09-01, עמ' 85–109 doi: 10.1007/s002220050090