חבורות מתיו

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

בתורת החבורות, המשפחה של חבורות מתיו היא משפחה קטנה של חבורות סופיות, מהן פשוטות, המתאפיינות בפעולה רב-טרנזיטיבית. בהקשרים שונים, מונים מחמש ועד שמונה חבורות מתיו. לפי הגרסה המרחיבה, כוללת המשפחה את החבורות ו- , שמהן הן חבורות פשוטות ספורדיות - הראשונות שהתגלו במסגרת מיון החבורות הפשוטות הסופיות אחרי חבורות התמורות הזוגיות (גם פשוטה, אלא שהיא איזומורפית לחבורת המטריצות ). אכן, את החבורות בנה אמיל לאונרד מת'יו (אנ'), 1835-1890.

בניית חבורות מתיו[עריכת קוד מקור | עריכה]

החבורה היא תת-חבורה מאינדקס 2 של , כאשר הוא אוטומורפיזם פרובניוס של השדה (שתי האחרות הן ו- ), ולכן היא פועלת על הישר הפרויקטיבי . פעולה זו היא פעולה 3-טרנזיטיבית חדה.

אם מוסיפים ל- את התמורה , כאשר יוצר של השדה מסדר 9, המקיים , מתקבלת החבורה , שפעולתה על היא 4-טרנזיטיבית-בחדות. חבורה זו היא חבורת האוטומורפיזמים של מערכת שטיינר , שהיא היחידה עם פרמטרים אלו.

כשמוסיפים לזה את התמורה , מתקבלת החבורה , שפעולתה על היא 5-טרנזיטיבית-בחדות. חבורה זו היא חבורת האוטומורפיזמים של מערכת שטיינר , היחידה עם פרמטרים אלו.

החבורה פועלת באופן טבעי על 16+4+1=21 הישרים הפרויקטיביים. הרחבה שלה הפועלת על 22 נקודות עם מייצב של נקודה השווה לחבורה הקודמת, נקראת . הפעולה של חבורה זו היא 3-טרנזיטיבית, ואינה חדה (המייצב של שלשת נקודות הוא מסדר 48). זוהי תת-חבורה מאינדקס 2 בחבורת האוטומורפיזמים של מערכת שטיינר . החבורה מוכלת בחבורה הפועלת באופן 4-טרנזיטיבי על 23 נקודות, כך שהמייצב של נקודה הוא (ולכן המייצב של ארבע נקודות הוא מסדר 48); זוהי חבורת האוטומורפיזמים של ; ובסופו של דבר, חבורת האוטומורפיזמים של המערכת פועלת על 24 הנקודות באופן 5-טרנזיטיבי, עם מייצב של נקודה השווה ל-.