מוליכות-על בטמפרטורות גבוהות

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
פיסה של מוליך על בטמפרטורה גבוהה, BSCCO-2223

מוליכי-על בטמפרטורות גבוהות הינם חומרים המקיימים את אותם המאפיינים של מוליכות-על שהם התנגדות חשמלית אפסית ודיאמגנטיות מושלמת (התנגדות לחדירת שדה מגנטי חיצוני), תכונה המתקיימת בברזל ובמגוון חומרים קרמיים מבוססי נחושת אחרים. בשונה ממוליכות-על שטווח הטמפרטורות שלה משתרע בין האפס המוחלט (273- מעלות צלזיוס) עד טמפרטורה של 30 קלווין (243- מעלות צלזיוס), מוליכות-על בטמפרטורות גבוהות מוגדרת החל מ-30 קלווין.

היסטוריה[עריכת קוד מקור | עריכה]

הם גילו את המוליך על הראשון, חומר מבוסס לנתן המכונה LaBaCuO, שמגיע למצב של הולכת על ב-35 מעלות קלווין שהיא מעל לערך התאורטי העליון שהיה מקובל באותה התקופה לטמפרטורה קריטית של מוליכי על, שהוא 30 מעלות קלווין. הדבר עורר תסיסה והתרגשות רבה בקרב הקהילה המדעית, שהתחילה לעבוד בקדחתנות ע"מ למצוא מוליכי על בטמפרטורות גבוהות יותר.

  • בשנת 1987 גילה צ'ינג וו-צ'ו תרכובת דומה בה מוחלף הלנטנום באיטריום, חומר המכונה YBCO, שהוא בעל טמפרטורה קריטית של 92 מעלות קלווין.
  • בשנת 1988 התגלה BSCCO שהוא בעל טמפרטורה קריטית של 108 מעלות קלווין, ובהמשך אותה שנה התגלה TBCCO שהוא בעל טמפרטורה קריטית של 127 מעלות קלווין.
  • בשנת 2009 התגלה HgBa2Ca2Cu3Ox בעל טמפרטורה הקריטית הגבוהה ביותר שהתגלתה עד היום שהיא 135 מעלות קלווין, כאשר תחת לחץ חזק הוא יכול להגיע אף ל-164 מעלות קלווין.

חשיבות התגלית[עריכת קוד מקור | עריכה]

מכיוון שבהולכה חשמלית כמות גדולה של אנרגיה הופכת לאנרגיית חום (ולכן היא מתבזבזת), הפוטנציאל הכלכלי של בניית מתקנים חשמליים שעשויים מחוטים אלו, שיוכלו לספק יתרונות אנרגטיים וסביבתיים בשל יכולתם להגביר באופן משמעותי את יעילות העברת החשמל ברכיבים אלקטרוניים או באחסון חשמל-עודף בשעות בהן הצריכה נמוכה לשימוש מאוחר יותר, הוא עצום.

אולם, עקב האנרגיה הרבה שנצרכת כדי להביא את החומרים האלו למצב של על- מוליכות (ע"י קירור מאוד יקר)- השימוש בטכנולוגיה הזאת לא כדאי מבחינה כלכלית.

עם זאת, לאחר גילויו של YBCO שהוא החומר הראשון שהתגלה שעבר את ה-77 קלווין, משום שטמפרטורה זו הנה מעל לטמפרטורת הרתיחה של החנקן ולכן ניתן להגיע אליה על ידי קירור בעזרת חנקן נוזלי שהוא יחסית זול ופשוט לשימוש וייצור, אפשר לומר שנכנס בסיס תאורטי לבניית אי-אלו שימושים מעשיים בשוק.

מאז התגלו על-מוליכים נוספים בטמפרטורות גבוהות, אך טרם נמצא הסבר תאורטי המקובל בקהילה המדעית למנגנון היוצר את על-המוליכות בטמפרטורות אלו.

קושי בהסברת התופעה[עריכת קוד מקור | עריכה]

אחרי גילוי העל-מוליכים בטמפרטורה גבוהה ב-1986, חשבו להסביר את תופעת העל מוליכות בטמפרטורות גבוהות על ידי תיאורית על מוליכים בטמפרטורות נמוכות. התאוריה מתארת את הגורם המתווך באינטראקציה בין האלקטרונים הוא התנודות בסריג היונים החיוביים של המתכת. אלקטרון אחד מעוות את הסריג כשהוא עובר דרכו, וכעבור כמה מיקרו-שניות משפיע העיוות על בן זוגו של האלקטרון, כשהוא מגיע למקום. תנודות הסריג נקראות פונונים – הן מתנהגות בדיוק כמו חלקיקים, ובליעתן על ידי האלקטרונים ופליטתן שוב מחוללות אינטראקציית משיכה חלשה.

הפיזיקאים מתארים את הדגם המקובל הזה בשם תיאורית BCS, לפי שמות המדענים שפיתחו את המתמטיקה שלה ב-1957. עד מהרה הבינו כי תאוריית BCS כפשוטה אינה מסוגלת להסביר את התנהגות החומרים החדשים הללו. ראשית, התנודות התרמיות שמקורן בטמפרטורות הגבוהות היו צריכות להטביע כל כוח משיכה שמחוללים הפונונים. שנית, החלפת האיזוטופים המרכיבים את העל-מוליך מטיפוס BCS משנה את מאפייני הפונונים (מפני שאטומים כבדים יותר אמורים להתנודד לאט יותר), ולכן משנה את הטמפרטורה הקריטית במידה שאפשר לחשבה במדויק, ואילו מידות השינוי בעל-מוליכים בטמפרטורה גבוהה הן אחרות. יתר על כן, יש עוד פרטים אופייניים שקשה להסבירם באמצעות BCS.

לאחר בדיקות של חומרים שונים וניתוח הגרפיים המתארים אותם, התגלה כי ישנה קפיצה חדה באנרגיות של זוגות אלקטרונים, והתחילו לחפש אחר רמזים לכוחות הגורמים להיווצרות הזוגות. חוקרים רבים ייחסו את הקפיצה לסוג מסוים של מצב משותף לאלקטרונים, הקרוי תהודה מגנטית. קבוצת ניסוי אחת טענה כי הפונונים הם הגורמים לקפיצה – תוצאה שאילו אומתה, הייתה הופכת על פיה את הדעה המקובלת בדבר על-מוליכים מן הסוג המקובל. אך, תוצאות שקיבלו נסיינים באוניברסיטת מקמסטר ובמעבדה הלאומית ברוקהייבן מחסלות כנראה גם את התהודה המגנטית וגם את הפונונים כדבק המבוקש.

כיום, חוקרים רבים מנסים למצוא את ההסבר לתופעה. למרות התאוריות שהועלו, לא נמצאה עד היום תאוריה מספיק טובה שמסבירה את התופעה. לכן, השאלה של איך עובדים מוליכי על בטמפרטורות גבוהות היא אחת מהשאלות הלא פתורות העיקריות של פיזיקת המצב המעובה התאורטי. המנגנון שגורם לאלקטרונים בחומרים האלו לנוע בתבנית של זוגות בטמפר' הגבוהות האלו לא ידוע. אחת מהסיבות לכך היא שהחומרים האלו מאוד מורכבים, חלקם עשויים מקריסטלים רב שכבתיים, שהופכים את המודל התיאורתי למסובך להחריד.

למרות הקושי בהסברת התופעה, חוקרים עובדים על שיפור האיכות והכמות של המוליכים, בין על ידי שיפור איכות החומרים הקיימים כיום ובין על ידי סינתוז חומרים חדשים. מטרת המחקרים האלו היא מציאת שיטות להוזלת העלויות, ויעילות צורת הייצור של החומרים –ע"מ שיוכלו לייצרם במהירות כדי לשלבם בתעשייה בצורה טובה יותר.

שימושים[עריכת קוד מקור | עריכה]

  • אחד השימושים בהם המוליכים האלו מצטיינים הינו הרמה מגנטית.

כלי רכב כדוגמת רכבות יכולים "לרחף" בעזרת מגנטים חזקים של מוליכי על, ובכך להקטין בצורה משמעותית את החיכוך בינם לבין הפסים. מוליכי העל עומדים במשימה בצורה הרבה יותר טובה, זולה ואיכותית מאשר אלקטרומגנטים רגילים.

בכך ניתן ליצור במחשב תמונה של גוף האדם "מבפנים". השיטה הזאת הרבה יותר יעילה ושימושית מצילומי רנטגן רגילים- אבל יקרה.

מחולל הבנוי מחוטים שהם מוליכי-על – נצילותו מגיעה עד לכדי-99%, כאשר גודלו כמחצית מגודלו של מחולל רגיל. כמו כן החל שימוש בשנאים הבנויים ממוליכי-על ובמתקני כוח חשמלי אחרים, שמסוגלים לאגור אנרגיה חשמלית בכמויות גדולות לשימוש בשעת חירום.

ראו גם[עריכת קוד מקור | עריכה]