סאלינון

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש
הסאלינון הוא האזור הכחול.
שרטוט להוכחת שטח הסאלינון. הצורה כאן היא איחוד האזור הכתום והסגול.

סאלינוןיוונית: σαλινον - צלוחית למלח) היא צורה גאומטרית הבנויה מארבעה חצאי עיגולים בשלושה גדלים. את חצי העיגול הגדול (קוטר AB) נוגסים (חותכים) שני חצאי עיגולים קטנים יותר (קוטר AD וקוטר EB, זהים באורכם). למרכז חצי העיגול הגדול נוסף בכיוון ההפוך חצי-עיגול קטן (רדיוס DO).

הסאלינון הופיעה לראשונה בספר הלמות של ארכימדס כטענה 14:

יהי ACB חצי עיגול על AB כקוטר, ויהיו AD,BE קטעים כך שאורכם הנמדד מנקודות A ו-B בהתאמה שווה. על AD ו-BE נבנה חצאי עיגולים הפונים אל C, ועל DE כקוטר חצי עיגול בצד הנגדי. נניח שהאנך ל-AB דרך O, מרכז חצי העיגול הראשון, פוגש את חצאי העיגולים המנוגדים בנקודות C ו-F בהתאמה. אז השטח של הצורה התחומה על ידי כל היקפי חצאי העיגולים שווה לשטח של המעגל הנבנה על CF כקוטר.

ארכימדס הוכיח ששטח הסאלינון שווה לשטח העיגול שקוטרו FC.

הוכחה[עריכת קוד מקור | עריכה]

הרכב שטח הסאלינון:

שטח הסלינון הוא:

  • מחצית העיגול הגדול ( רדיוס AO)
  • ועוד: מחצית העיגול התחתון ( רדיוס DO )
  • פחות: פעמיים חצי עיגול שנוגס בעיגול הגדול משני צדדיו ( קוטר AD ו EB ).


קביעת הרדיוסים של העיגולים ושטחיהם:

1. יהי רדיוס העיגול הגדול AO, שטח מחציתו יהיה:

2. יהי רדיוס העיגול התחתון DO, שטח מחציתו יהיה:

3. אזי, רדיוס העיגול הנוגס (החותך) את העיגול הגדול ( מחצית AD ) יהיה :

ושטח העיגול יהיה: ( חישבנו עיגול ולא חצי עיגול משום שעלינו לחסר שני חצאים )


סך כל שטח הסאלינון:

ומצד שני:

הקוטר CF של המעגל בציור הוא סכום הרדיוסים AO + DO : ולפיכך הרדיוס הוא:

שטח העיגול עם רדיוס גם הוא:

ארבלוס[עריכת קוד מקור | עריכה]

אם הנקודות D ו-E יתלכדו עם הנקודה O נקבל צורה הקרויה ארבלוס, שגם בה עסק ארכימדס.

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא סאלינון בוויקישיתוף