פונקציית הצטברות

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

בתורת ההסתברות, פונקציית הצטברות (Cumulative distribution function, בראשי תיבות CDF) של משתנה מקרי היא פונקציה של משתנה מקרי X, שערכיה קובעים את ההסתברות למאורעות מהצורה , לכל a ממשי. פונקציה זו מהווה הכללה של פונקציית הסתברות שעוסקת במשתנה מקרי בדיד, גם למשתנה מקרי רציף.

תכונות מופשטות והקשר למשתנים מקריים[עריכת קוד מקור | עריכה]

אם X משתנה מקרי, הפונקציה מקיימת בהכרח ארבע תכונות:

  1. הגבול שווה ל-0.
  2. הגבול שווה ל-1.
  3. הפונקציה מונוטונית עולה (במובן החלש), כלומר לכל .
  4. הפונקציה רציפה מימין.

ולהפך: אם F היא פונקציה המקיימת את ארבע התכונות האלה, אפשר להגדיר ממנה משתנה מקרי. פורמלית, כדי להגדיר משתנה מקרי יש לתאר את ההסתברות לכך שהוא ישתייך לכל קבוצה A השייכת לאלגברת בורל על הממשיים. עם זאת, מכיוון שהקטעים יוצרים את האלגברה, מספיק להגדיר את ההסתברויות למאורעות . ואכן, אם דורשים ש- , נובע שהגבול משמאל שווה להסתברות . מכאן אפשר לקבל את ההסתברויות לכל המאורעות מהצורה , , ו- .

בפרט נובע ש-, כך שהסיכוי למאורעות הוא אפס אם ורק אם הפונקציה F רציפה. אם הפונקציה גזירה, אפשר לתאר אותה כאינטגרל של פונקציית צפיפות f:

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא פונקציית הצטברות בוויקישיתוף