הנוסחה המגדירה את השדות הגלובליים קושרת את כל הערכים המוחלטים של השדה, וליתר דיוק את הערכים המוחלטים עד כדי שקילות. שדה הוא גלובלי אם אפשר לבחור נציג אחד של כל מחלקת שקילות של ערכים מוחלטים, כך שלכל x שונה מאפס בשדה מתקיים . לדוגמה, בשדה המספרים הרציונליים יש לעבור על כל הערכים המוחלטים ה-p-אדיים , ועל הערך המוחלט הארכימדי, שהוא הערך המוחלט הסטנדרטי. הערך המוחלט ה-p-אדי של מספר רציונלי x הוא 1 לכמעט לכל p, ומכפלת כל הערכים המוחלטים ה-p-אדיים האחרים שווה להפכי של |x|.
^ 123שדות מקומיים, מהווים מחלקה של שדות טופולוגיים ולא של שדות. אולם, המבנה האלגברי של שדה על שדה מקומי מגדיר ביחידות את הטופולוגיה עליו, לכן ניתן לראות בהם כמחלקה של שדות
^שדות סגורים ממשית ,מהווים מחלקה של שדות סדורים ולא של שדות. אולם, המבנה של שדה על שדה סגור ממשית מגדיר ביחידות את הסדר עליו, לכן ניתן לראות בהם כמחלקה של שדות
^ יכול להיות כל שדה מספרים. השדה יהיה ההשלמה שלו במקוםסופי שלו, והשדה הסופי יהיה מנה של חוג השלמים באידיאל הראשוני המתאים. לדוגמה אפשר לקחת את ואז יהיה חוג השלמים של גאוס. אם רוצים ששני החיצים המקווקוים ייצגו העתקות אז צריך לבחור שדה שיש לו גם שיכונים ממשיים וגם מרוכבים, למשל .
^הסימבול יכול לסמן משתנה אחד או כל קבוצה סדורה היטב של משתנים. יש שיכון בין אובייקט המתאים לקבוצה של משתנים לבין אובייקט המתאים לקבוצה של משתנים המכילה את .