צפיפות (תורת המספרים)

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

תורת המספרים עוסקת בין השאר בקבוצות אינסופיות של מספרים טבעיים, ובהשוואה ביניהן. למשל, "מובן מאליו" שיש "יותר" מספרים זוגיים, מאשר מספרים ריבועיים; בקבוצת המספרים הטבעיים שעד מיליון יש חצי-מיליון מספרים זוגיים, ורק אלף מספרים ריבועיים.

טיפול מתמטי מסודר בשאלות כאלה נעשה בעזרת מושג הצפיפות, שאפשר להגדיר בכמה דרכים.

ההגדרה הפשוטה ביותר היא של צפיפות טבעית: נניח ש- A קבוצה של מספרים טבעיים. את הרישות שלה מסמנים ב- \ A(n)=A \cap \{1,2,\dots,n\}. העוצמה של הרישא מקיימת \ 0\leq |A(n)|\leq n, וההשוואה בין הקבוצה A לקבוצת כל המספרים נעשית דרך הסדרה \ \frac{|A(n)|}{n}. הגבול של סדרה זו (אם הוא קיים) נקרא בשם "הצפיפות הטבעית של הסדרה". צפיפות זו (אם קיימת) היא בהכרח מספר בין 0 ל-1. אם הגבול אינו קיים, אין לקבוצה צפיפות טבעית. במקרה זה אפשר להשתמש בגבול העליון ובגבול התחתון של הסדרה שקיימים תמיד, לתיאור הצפיפות; אולם מערכי גבולות אלה קשה יותר להסיק על תכונות הקבוצה.

בתורת המספרים האנליטית שכיחה יותר צפיפות דיריכלה, המכלילה את הצפיפות הטבעית: אם לקבוצה יש צפיפות טבעית, אז יש לה גם צפיפות דיריכלה, והן שוות. בתורת המספרים האדיטיבית נעזרים במושג אחר של צפיפות, הנקרא צפיפות שנירלמן.