אי תלות אלגברית

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

במתמטיקה, ובמיוחד באלגברה קומוטטיבית, תת קבוצה S של אלגברה A נקראת בלתי תלויה אלגברית מעל שדה הבסיס K, אם לא קיים פולינום לא טריוויאלי עם מקדמים מ-K שמאפס תת-קבוצה סופית של איברי S. במילים אחרות, S היא בלתי תלויה אלגברית אם לכל ב-S ולכל פולינום שאינו פולינום האפס, . בפרט, קבוצה בת איבר אחד היא בלתי תלויה אלגברית מעל K אם ורק אם הוא טרנסצנדנטי מעל K. באופן כללי יותר, כל איבריה של קבוצה בלתי תלויה אלגברית הם איברים טרנסצנדנטים מעל K, אך זהו בוודאי לא תנאי מספיק לכך. לדוגמה, תת-הקבוצה של שדה המספרים הממשיים היא לא בלתי תלויה אלגברית מעל שדה המספרים הרציונלים, מכיוון שעבור הפולינום עם המקדמים הרציונלים

מתקיים

.

המספר הגדול ביותר של איברים בלתי תלויים אלגברית נקרא דרגת הטרנסצנדנטיות של A מעל K.

השאלה האם הקבוצה היא תלויה אלגברית מעל המספרים הרציונליים היא בעיה פתוחה במתמטיקה. ב-1996 הוכיח יורי נסטרנקו כי הקבוצה היא בלתי תלויה אלגברית מעל .

משפט לינדמן-ויירשטראס[עריכת קוד מקור | עריכה]

Postscript-viewer-shaded.png ערך מורחב – משפט לינדמן-ויירשטראס

לעתים קרובות ניתן להשתמש במשפט לינדמן-ויירשטראס על מנת להוכיח כי קבוצה מסוימת היא בלתי תלויה אלגברית מעל שדה הרציונלים. המשפט נקרא על שמם של פרדיננד לינדמן וקארל ויירשטראס. לינדמן הוכיח ב-1882 כי הוא מספר טרנסצנדנטי לכל אלגברי שונה מ-0. ויירשטראס הוכיח ב-1885 את הגרסה הכללית יותר של המשפט הטוענת כי אם הם מספרים אלגברים בלתי תלויים לינארית מעל אז המספרים הם בלתי תלויים אלגברית מעל .

ראו גם[עריכת קוד מקור | עריכה]