מודול נתרי
באלגברה מופשטת, מודול נתרי הוא מודול המקיים את תנאי השרשרת העולה (ACC) על הסדר החלקי של יחס ההכלה על תת-המודולים שלו.
תנאי זה שקול להגדרות הבאות לנתריות של מודול :
- בכל תת-קבוצה לא ריקה של תת-מודולים של יש איבר מקסימלי (ביחס להכלה).
- כל תת-מודול של נוצר סופית.
היסטוריה
[עריכת קוד מקור | עריכה]דויד הילברט היה המתמטיקאי הראשון שהשתמש בתכונות של תת-מודולים נוצרים סופית. הוא הוכיח את משפט הבסיס של הילברט שעל פיו כל אידיאל בחוג הפולינומים ב- משתנים מעל שדה כלשהו נוצר סופית. למרות זאת, התכונה נקראת על שם אמי נתר.
תכונות
[עריכת קוד מקור | עריכה]חוג נתרי הוא חוג שהוא מודול נתרי כמודול מעל עצמו. מעל חוג נתרי, כל מודול נוצר סופית הוא מודול נתרי.
לכל תת-מודול של מודול , המודול נתרי אם ורק אם ו- נתרים (למרות שתת-מודול של מודול נוצר סופית אינו בהכרח נוצר סופית).
כל מודול נתרי (או ארטיני) אפשר לפרק לסכום ישר סופי של מודולים אי-פרידים (כאלו שאי אפשר לפרק אותם לסכום ישר). אם המודול בעל אורך סופי, אז הפירוק יחיד עד כדי סדר (משפט קרול-רמק-שמידט).
ראו גם
[עריכת קוד מקור | עריכה]קישורים חיצוניים
[עריכת קוד מקור | עריכה]- מודול נתרי, באתר MathWorld (באנגלית)