מודול נתרי

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

באלגברה מופשטת, מודול נתרי הוא מודול M המקיים את תנאי השרשרת העולה (ACC) על הסדר החלקי של יחס ההכלה על תת-המודולים שלו.

תנאי זה שקול להגדרות הבאות לנתריות של מודול M:

היסטוריה[עריכת קוד מקור | עריכה]

דויד הילברט היה המתמטיקאי הראשון שהשתמש בתכונות של תת-מודולים נוצרים סופית. הוא הוכיח את משפט הבסיס של הילברט שעל פיו כל אידיאל בחוג הפולינומים ב-n משתנים מעל שדה כלשהו נוצר סופית. למרות זאת, התכונה נקראת על שם אמי נתר.

תכונות[עריכת קוד מקור | עריכה]

חוג נתרי הוא חוג שהינו מודול נתרי כמודול מעל עצמו. מעל חוג נתרי, כל מודול נוצר סופית הוא מודול נתרי.

לכל תת-מודול K של מודול M, המודול M נתרי אם ורק אם K ו- M/K נתרים (למרות שתת-מודול של מודול נוצר סופית אינו בהכרח נוצר סופית).

כל מודול נתרי (או ארטיני) אפשר לפרק לסכום ישר סופי של מודולים אי-פרידים (כאלו שאי אפשר לפרק אותם לסכום ישר). אם המודול בעל אורך סופי, אז הפירוק יחיד עד כדי סדר (משפט קרול-רמק-שמידט).


ראו גם[עריכת קוד מקור | עריכה]